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Summary. This paper first treats the point and interval estimation of α1 which
specifies the odds ratio eα1 in a disease incidence proportion with measurement
errors. Some estimators are proposed, then the accuracy and the stability are inves-
tigated together with the well-known estimator proposed by Rosner et al. [RWS89].
Next the confidence interval for the disease incidence proportion is found by the
normal approximation and the bootstrap methods. Numerical examinations are also
carried out and some findings are given.
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1 Introduction

It has long been appreciated that error in the measurement of individual exposure
that is random (nondifferential) with respect to disease status will tend to bias esti-
mates of relative risk towards the null value in most commonly considered instances.
This causes mainly by random error of exposure measurement.

Researchers have attempted to correction and get unbiased estimates of disease
risk. Initially, it was assumed that measurement errors were associated with only
within person random variation. But in nutritional studies, for example, the use of
the FFQ (Food Frequency Questionnaires) is likely to result in systematic error.

To obtain a corrected risk estimate, Rosner et al. [RWS89] introduced the linear
Regression Calibration (RC) method, which estimates the attenuation coefficient as
the slope of true on observed exposure. Because this approach allows for systematic
bias as well as within person random variation in the FFQ, it has gained recognition
as the best currently available approach for correcting risk estimates for dietary
measurement error.

In this paper, we first investigate the accuracy and the stability of the risk
estimates. We propose some risk estimators and compare them to the Rosner’s es-
timator numerically. We also investigate the interval estimation based upon these
estimators. Another interest in this study is the interval estimation of the incidence
proportion, and we apply the normal approximation and the bootstrap methods to
find the confidence intervals of the proportion via the estimators stated above.
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In section 2, a brief review of the RC method is given. The properties of the
risk estimators and the computational methods of confidence intervals are discussed
in section 3. The results of simulation studies are presented in section 4, and some
discussion is also made in the section.

2 Brief review of Regression Calibration (RC) method

Suppose the model relating a single-dimensional true exposure T and the probability
of disease D is of logistic form;

logit[Pr(D|T )] = α0 + α1T. (1)

Further, assume that a linear relationship exists between true exposure T and ob-
served exposure Q, that is, the following model is satisfied;

T = λ0 + λ1Q + ǫ, ǫ ∼ N(0, σ2). (2)

We assumed throughout that a measurement error is nondifferential with respect
to disease, i.e, Pr(D|T, Q) = Pr(D|T ). Ignoring measurement error, the logistic
regression model for D on Q is the form logit[Pr(D|Q)] = γ0 + γ1Q.

Now our objective is to determine α1 from a data set (a) a main study population
with observed Q exposure levels and disease statuses, and (b) a validation study
population, distinct from (a), where both true T and observed Q exposure levels are
available.

Using the RC method, we can consistently estimate α1, true log odds ratio, as
follows.

(i) Estimate γ1 (denote γ̂1) by a maximum likelihood method from the main study
data.

(ii) Estimate λ1 (denote λ̂1) by ordinary least squares from the validation study
data.

(iii) Estimate α1 by α̂1 = γ̂1/λ̂1 (see [RWS89]).

It has been shown through theory as well as through a detailed simulation study
that when the disease is rare, the relative risk is not large, this estimator will remove
most of the bias due to measurement error in Q. Applying the delta method, the
asymptotic variance of α̂1 = γ̂1/λ̂1 can be obtained as follows after some complicated
manipulation;

V ar(α̂1) ≈ Var(γ̂1)/λ2
1 + γ2

1Var(λ̂1)/λ4
1. (3)

3 Estimation of α1 and p

3.1 Stability of the point estimator α̂1

The RC estimator of α1 is given by α̂1 = γ̂1/λ̂1. For a ratio estimator like α̂1, if
the coefficient of variations of the numerator and denominator are larger than 0.1
or if the sample size is small, for example less than 30, the variance of the ratio
estimator tends to give a too low value and the positive skewness in the distribution
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may become noticeable (see [C77]). Moreover even with bivariate normality of the
numerator and denominator, the confidence intervals for the ratio estimator derived
from Fieller’s limits have been criticized as not conservative enough (see also [C77]).
These facts suggest that the RC estimator of α1 might be unstable.

We therefore investigate more stable estimators of α1. Let us regard (2) as the
regression of Ti on Qi, and consider the inverse regression model Qi = β0 +β1Ti +ǫi.
The ordinary least squares estimator of β1 is then given by β̂1 = λ̂1/{(Se/SQQ)+λ̂2

1},
where λ̂1 is the ordinary least squares estimator calculated from (2). Se and SQQ

are given by Se =
Pm

i=1
(Ti − λ̂0 − λ̂1Qi)

2 and SQQ =
Pm

i=1
(Qi − Q̄)2 respectively,

where Q̄ is the sample mean of Qi’s. Note that we can show the distribution of this
estimator β̂1 has moments. Therefore if we use β̂1 instead of 1/λ̂1, it may be possible
to estimate α1 with more stability. Extending this idea, consider the following ridge
type estimator; β̂1k = λ̂1/{kσ̂2/SQQ + λ̂2

1}, where k is a constant and k/SQQ = O(1)
and σ̂2 = Se/(m − 2). Based upon this idea we propose the following generalized
estimator of α1, which is obtained by similar way to the RC method;

α̂1k = γ̂1β̂1k = γ̂1 × λ̂1/{kσ̂2/SQQ + λ̂2
1}. (4)

Note that α̂1k is the product of γ̂1 and β̂1k. They are mutually independent and
both of them have moments, so α̂1k has moments for any finite sample size. If k = 0
this is nothing but the RC estimator, since β̂10 = 1/λ̂1. In the following section 4,
we make a comparison between α̂1 and α̂1k numerically.

3.2 Interval estimation of α1

The parameter α1 in (1) means the increment of logit(Pr(D|T )) when exposure
increases by one unit, and eα1 is the odds ratio for one unit increase of exposure.
Hence we are interested in the inference of α1. Rosner et al. [RWS89] examined
the confidence intervals of α1 by the normal approximation method. However, as
mentioned in section 3.1, we should pay attention to estimating the asymptotic
variance of α̂1 based upon the delta method (see (3)), and to making the confidence
intervals by normal approximation.

On the other hand α̂1k may be stable, hence it may be possible to find a good
confidence interval based upon the normal approximation method.

We next consider to find the confidence interval of α1 via the bootstrap methods.
First we calculate α̂∗

1 ’s from bootstrap samples and then based upon the bootstrap
distribution of α̂∗

1, we make the confidence interval of α1. In case of the RC method,
α̂1 = γ̂1/λ̂1, where γ̂1 is calculated from a main sample and λ̂1 is from a validation
sample. In this study, we first calculate γ̂∗b

1 (b = 1, 2, . . . , B) by resamples from the
main sample. We also calculate λ̂∗b

1 (b = 1, 2, . . . , B) by resamples from the validation
sample. Then they produce α̂∗b

1 = γ̂∗b
1 /λ̂∗b

1 for b = 1, 2, . . . , B. In the numerical
experiment of the next section 4, we consider the interval estimation based upon
α̂1k in addition to α̂1, where α̂1k is the proposed estimator (4). To find bootstrap
confidence intervals, we consider the percentile method and the BCa method. For
detailed algorithm of these methods, see Efron and Tibshirani [ET93].

3.3 Interval estimation of p

In preceding studies, researchers’ main interest is to examine the interval estimation
of α1. However, we also have an interest in the disease incidence proportion p =
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Pr(D|T ), and the examination on the interval estimation of p must be important.
In this subsection we discuss this problem.

Let us now consider to find the confidence interval of p by normal approximation
and by bootstrap. From (1), a naive estimator of p is given by p̂ = eα̂0+α̂1T /{1 +
eα̂0+α̂1T }, where α̂0 and α̂1 are estimated by the RC method or the generalized
inverse regression method (4). Note that p should exist between 0 and 1, so we first
find the confidence interval of logit(p) and then obtain that of p by inverting logit(p).

4 Numerical examination

4.1 Set-up of simulation study

As for the estimation of α1, Rosner et al. [RWS89] carried out a simulation study. So
we will carry out our simulation under similar condition to Rosner’s for comparison.
The procedure is as follows.

(i) From a standard normal distribution N(0, 1), generate Ti for i = 1, . . . , m, where
m is the size of a validation sample.

(ii) Assume the model Qi = Ti + ei, ei ∼ N(0, (1 − λ1)/λ1). First generate ei for
i = 1, 2, . . . , m. Then by combining these ei’s with Ti’s generated in the step (i),
make a validation sample (Ti, Qi) (i = 1, 2, . . . , m). For the value of λ1, the
computation is done in case of λ1 = 0.3, 0.5, 0.7, because these values seem to
often appear in practical situations.

(iii) A main sample (Yi, Qi) with size n is made by the following procedure: First
similar to the steps (i) and (ii), generate (Ti, Qi) (i = 1, 2, . . . , n). For the value
of α1, we consider the cases eα1 = 1.5, 2.0, 3.0, 4.0, 5.0, where these values may
often appear in practical situations. The value of α0 is considered to be the value
of logit(p) for T = 0. So we fix the value so as to satisfy p = 0.05, that is, the
relation eα0/(1+eα0) = 0.05 is satisfied. Using the values of α0 and α1, calculate
the value of p given Ti. Then generate Yi from the Bernoulli distribution with
the parameter p computed above. By combining these Yi’s with Qi’s which are
the paired values of Ti’s, make a main sample (Yi, Qi) (i = 1, 2, . . . , n).

(iv) Set T = −1, 0, 1, 2 for which the disease incidence proportion should be
obtained. Then compute the confidence intervals with 95 percent confidence
coefficient by normal approximation, percentile or BCa method given in section
3.

In the following simulation study, we set m = 100, n = 1, 000, and the number of
simulations R = 1, 000. The computation is carried out for all combination of the
values λ1 and α1.

Remark. The model considered in the above step (ii) seems to be different from
the model (2) given in section 2. However it is shown that the model is the special
case of being λ0 = 0 and σ2 = 1 − λ1 in (2).

4.2 Examination on stability of the estimators for α1

In this study we consider two types of estimator for α1; α̂R
1 is the RC estimator given

in section 2, and α̂G
1 is the generalized estimator given by (4) where k = 1. For the
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values of α1 and λ1, we consider eα1 = 1.5, 2.0, 3.0, 4.0, 5.0, and λ1 = 0.3, 0.5, 0.7,
respectively. The number of bootstrap replication is B = 2, 000.

Table 1 shows a part of the computational results. That is, we compute the
mean, standard deviation (SD), skewness, kurtosis, minimum and maximum values,
and the range over 1,000 simulations for two kinds of the estimates. From this table,
we can get the following findings.

(1) α̂G
1 underestimates the true value except for the case eα1 = 1.5, λ1 = 0.7. α̂G

1

and α̂R
1 are monotone increasing with respect to λ1 except α̂R

1 for eα1 = 1.5 and
2.0. As for the comparison of α̂G

1 and α̂R
1 , α̂G

1 is smaller than α̂R
1 for all cases.

The biases of α̂G
1 and α̂R

1 are not so different on the whole.
(2) The values of SD, skewness, kurtosis and range for α̂G

1 are almost all smaller than
those for α̂R

1 . The differences of skewness and kurtosis are remarkable for small
value of λ1. In case of λ1 = 0.3, they range from 6.0% to 10.9% for skewness,
and from 0.9% to 4.6% for kurtosis. So the tail of α̂R

1 ’s distribution is heavier
than that of α̂G

1 ’s, especially when λ1 is small.

4.3 Examination on confidence interval of α1

Table 2 shows a part of the computational results for the interval estimation of α1.
That is, we compute the coverage probability, length, shape over 1,000 simulations
for two kinds of estimates, where confidence coefficient is 95 percent. The shape
is defined by (cU − α̂1)/(α̂1 − cL), where cL and cU are the lower and the upper
limits of the confidence interval, respectively. The first column of the table indicates
estimation methods; N∗, P∗, and B∗ are corresponding to Normal approximation,
Percentile, and BCa methods, respectively. ∗R and ∗G are corresponding to α̂R

1 and
α̂G

1 , respectively. From this table, we can get the following findings.

(1) The coverage probability of NG is always smaller than that of NR. The cover-
age probability of Normal approximation method is monotone decreasing with
respect to true odds ratio.

(2) The length of the confidence interval based upon α̂G
1 is shorter than that based

upon α̂R
1 for all cases. This suggests the stable property of α̂G

1 .
(3) From the viewpoint of coverage probability, Normal approximation method is

slightly better than Percentile method for small values of α1 (eα1 = 1.5, 2.0).
However Percentile is much better than Normal approximation for large val-
ues of α1 (eα1 = 3.0, 4.0, 5.0); especially the coverage probabilities of Normal
approximation are less than 80% for the case of eα1 = 5.0 and λ1 = 0.3, 0.5.

(4) BCa method is worse than other methods. This reason may be that the bias
and/or skewness of the estimates’ distribution are too much adjusted by BCa

method.

4.4 Examination on confidence interval of p

Table 3 shows a part of the computational results for the 95 percent confidence
intervals of p = Pr(D|T ). That is, we compute the coverage probability, the length
and shape of confidence intervals. From this table, we can get the following findings.
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(1) The coverage probability for Normal approximation and Percentile method does
not keep the nominal level in some cases, especially for large odds ratio. On the
other hand, the coverage probability for BCa method is quite satisfactory except
for T = 0.

(2) The length of confidence interval tends to become large with the increase of T
; especially for T = 1, 2.

(3) The length for NG is always shorter than that for NR.
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Table 1. Estimates of α1 (R = 1, 000, B = 2, 000, n = 1, 000, m = 100).

Estimator Mean SD Skewness Kurtosis Min. Max. Range

α1 = 0.4054 (eα1 = 1.5), λ1 = 0.5

α̂R
1 0.4097 0.2140 0.2274 3.2981 −0.3239 1.2488 1.5727

α̂G
1 0.4052 0.2115 0.2243 3.2971 −0.3187 1.2377 1.5564

α1 = 1.0986 (eα1 = 3.0), λ1 = 0.5

α̂R
1 1.0524 0.2166 0.4132 3.2349 0.5157 1.9238 1.4081

α̂G
1 1.0409 0.2130 0.4021 3.2127 0.5122 1.8921 1.3798

α1 = 1.6094 (eα1 = 5.0), λ1 = 0.5

α̂R
1 1.4132 0.2274 0.5507 3.5719 0.7604 2.4117 1.6513

α̂G
1 1.3978 0.2229 0.5364 3.5317 0.7546 2.3725 1.6179
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Table 2. 95 percent Confidence intervals of α1 by the normal approximation and
the bootstrap methods (R = 1, 000, B = 2, 000, n = 1, 000, m = 100).

Method Coverage probability Length Shape

α1 = 0.4054 (eα1 = 1.5), λ1 = 0.5
NR 0.956 0.8212 1.0000
NG 0.954 0.8116 1.0000
PR 0.942 0.8495 1.1323
PG 0.945 0.8377 1.1265
BR 0.958 0.8846 0.6939
BG 0.956 0.8729 0.6920

α1 = 1.0986 (eα1 = 3.0), λ1 = 0.5
NR 0.930 0.8376 1.0000
NG 0.922 0.8246 1.0000
PR 0.937 0.8722 1.3589
PG 0.935 0.8543 1.3431
BR 0.896 0.8683 0.7664
BG 0.890 0.8534 0.7605

α1 = 1.6049 (eα1 = 5.0), λ1 = 0.5
NR 0.804 0.8889 1.0000
NG 0.779 0.8727 1.0000
PR 0.876 0.9292 1.4583
PG 0.863 0.9062 1.4384
BR 0.746 0.9070 0.8034
BG 0.721 0.8882 0.7960
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Table 3. 95 percent Confidence intervals of Pr(D|T ) by the normal approximation
and the bootstrap methods (R = 1, 000, B = 2, 000, n = 1, 000, m = 100, λ1 = 0.5).

eα1 = 2.0 eα1 = 3.0

Method C.P.† Length Shape C.P.† Length Shape

T = −1 p = 0.0256‡ p = 0.0172‡

NR 0.917 0.0342 1.7567 0.813 0.0300 1.8303

NG 0.919 0.0341 1.7481 0.799 0.0300 1.8190

PR 0.933 0.0318 1.2882 0.862 0.0272 1.3086

PG 0.933 0.0321 1.3169 0.851 0.0278 1.3587

BR 0.954 0.0314 0.8901 0.935 0.0268 0.9270

BG 0.954 0.0315 0.9193 0.932 0.0271 0.9747

T = 0 p = 0.05‡ p = 0.05‡

NR 0.905 0.0333 1.3310 0.711 0.0415 1.3574

NG 0.905 0.0332 1.3301 0.710 0.0413 1.3557

PR 0.919 0.0313 1.0245 0.725 0.0371 1.0576

PG 0.927 0.0314 1.0585 0.726 0.0378 1.1185

BR 0.960 0.0322 0.7160 0.870 0.0382 0.7120

BG 0.952 0.0321 0.7567 0.850 0.0383 0.7774

T = 1 p = 0.0952‡ p = 0.1364‡

NR 0.950 0.0828 1.4061 0.914 0.1224 1.3409

NG 0.950 0.0813 1.4020 0.919 0.1197 1.3378

PR 0.923 0.0845 1.4280 0.847 0.1243 1.5806

PG 0.926 0.0818 1.3663 0.863 0.1201 1.4922

BR 0.961 0.0817 0.8939 0.945 0.1175 0.9673

BG 0.959 0.0800 0.8449 0.954 0.1157 0.8877

T = 2 p = 0.1739‡ p = 0.3214‡

NR 0.956 0.2407 1.5871 0.969 0.3384 1.2272

NG 0.956 0.2355 1.5845 0.969 0.3318 1.2334

PR 0.938 0.2546 1.7572 0.940 0.3527 1.5395

PG 0.942 0.2470 1.7196 0.940 0.3444 1.5075

BR 0.943 0.2356 1.0770 0.964 0.3393 0.9383

BG 0.942 0.2294 1.0500 0.968 0.3333 0.9075
† C.P. : Coverage Probability
‡ p : True value of Pr(D|T )


