
Technical Report 95-28, Mathematical Sciences Institute, Cornell University (1995)

A Theory of Stabilizing Algebraic Algorithms

Kiyoshi Shirayanagi∗

NTT Communication Science Laboratories

Moss Sweedler
ACSyAM, Mathematical Sciences Institute, Cornell University

Abstract

The paper is about stabilizing algorithms. To capture the flavor in this ab-
stract, we describe key results and techniques without the accompanying hypothe-
ses. The first result is that given an algorithm A one can automatically generate
a sequence of algorithms {Ai}i which converges to A. Moreover {Ai}i stabilizes A
in the sense that if the input I is approximated by a sequence of inputs {Ij}j then
limi limj Ai(Ij) = A(I). The key underlying technique is to enlarge the data set on
which A operates. This is done by exchanging coefficients in the original data set
with pairs consisting of a coefficient and an error bound. There are preselected co-
efficient values which include the singularities of predicates in the algorithm. When
a coefficient is within the error bound of a preselected value, it is rewritten to the
preselected value. This rewriting preserves convergence and moderates the effect of
the singularities of the predicates in A.

∗Part of this research was carried out while the author stayed at the ACSyAM branch of the Mathe-
matical Sciences Institute of Cornell University.

1



Contents

1 Introduction 4

2 Fundamentals 8

2.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Data Sets, S(R; X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Structured Functions and Algorithms . . . . . . . . . . . . . . . . . . . . . 14

2.4 Technical Results about Structured Functions . . . . . . . . . . . . . . . . 16

2.5 Structured Functions in the Representation of a Free Module . . . . . . . . 22

2.6 Examples of Other Algebraic Structures and Algorithms . . . . . . . . . . 25

3 Approximation 29

3.1 Posets and Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Bracket Coefficients 38

4.1 Basic Bracket Coefficient Considerations . . . . . . . . . . . . . . . . . . . 38

4.2 Convergent Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Technical Results about Convergent Bounds . . . . . . . . . . . . . . . . . 45

4.4 Rewriting Magic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 S(BC[R,P ]; X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Practical Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Stability Theorems 68

5.1 Overview of Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Extension of A to BC(A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Approximate Arithmetic and More General Functions . . . . . . . . . . . . 81

5.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Further Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2



Acknowledgement 91

References 92

3



1 Introduction

This paper is about stabilizing algorithms. An ambitious activity. And as with every
elaborate enterprise, there are various viewpoints from which to explain the ensuing en-
deavor. This introduction provides the opportunity to present both the problem and the
payoff from several of the various viewpoints.

The easiest1 viewpoint from which to describe stability is the mathematical viewpoint.

Mathematical Overview

From the mathematical view, think of an algorithm as being like a mathematical
function. An algorithm is stable at a point if it is continuous at that point. Some
functions or algorithms which are not continuous are nevertheless the limit of a sequence of
functions or algorithms which are continuous. This is a satisfactory notion of stabilization
but not always achievable. For example, IS ZERO? is the one-line algorithm or function
defined on the real numbers and returns “TRUE” for the input 0 and “FALSE” when the
input is any other real number. IS ZERO? cannot be the limit of continuous functions.2

One approach to stabilizing IS ZERO? is to embed {“TRUE”,“FALSE”} in the unit
interval where “TRUE” is 1 and “FALSE” is 0. Then IS ZERO? can be approximated by
continuous functions to the unit interval.3 Our methods avoid this approach because we
seek to develop techniques which are more universally and automatically applicable and
will handle many other algebraic structures and topologies. Hence, in general, we do not
change the range. By our method of stabilization IS ZERO? could4 be approximated by
the sequence of algorithms/functions {gn}n where gn(x) = “FALSE” when |x| > 1/n and
gn(x) = “TRUE” when |x| ≤ 1/n. The sequence of functions {gn}n converges pointwise
to IS ZERO?. While the functions gn are not continuous, the sequence {gn}n has the
following stability property: for any convergent sequence {rk}k of real numbers converging
to r, and r need not be 0:

limi ( limj gi(rj) ) = g(r)

This suggests that g(r) might be approximated as a limit of a sequence like {gk(rk)}k.
5 If

rather than dealing with any convergent sequence {rk}k, we are allowed to pick a sequence
of rn’s compatible with the specific sequence {gn}n, then in fact {gk(rk)}k converges to

1The mathematical viewpoint is easiest to describe because it is so formal.
2IS ZERO? is not continuous if the set {“TRUE”,“FALSE”} has the discrete topology. In this case

only the (two) constant functions from the reals to {“TRUE”,“FALSE”} are continuous. IS ZERO? is
not the limit of constant functions.

3For example let fn(x) = 0 when |x| > 1/n and fn(x) = 1 − n|x| when |x| ≤ 1/n. The sequence of
functions {fn}n converges pointwise to IS ZERO?.

4Our methods do not necessarily yield a unique sequence of algorithms/functions approximating the
original algorithm.

5If the sequence {rk}k converges too slowly, it may be necessary to use {gk(rk2)}k or {gk(rι(k))}k

instead of {gk(rk)}k for a suitable function ι : Z → Z.

4



g(r). This in fact is what is done in Theorem (5.4.11), where of course we are treat-
ing more general algorithms than just IS ZERO?. The win here is that even when the
original algorithm involves exact computation, approximating algorithms may be selected
which only require fixed precision approximate computation. gk requires higher precision
approximate arithmetic as k increases, of course. A key example is the general use of
floating point computation to compute algorithms involving exact computation. The pa-
per [6] uses floating point computation to compute Gröbner bases. Many key ideas in this
paper are the continued development of ideas in [6].

Practical Overview

Since the paper is about stabilizing algorithms, we begin by giving our definition6 of an
algorithm. Basically, an algorithm has an initialization line which accepts input data and
then continues with numbered instruction steps. There are only four kinds of instructions:
“local variable assignment based on the result of computation”, “conditional goto based
on the result of predicate evaluation”, “absolute goto”, and “stop with the dissemination
of output data”. While this is an adequate formal structure to express algorithms, it is
rather spare. On the other hand, this simplicity is what enables us to effectively reason
about algorithms.

Another part of our specification of algorithms concerns data sets. I.e. the data which
may be input, output and manipulated by an algorithm. Roughly speaking our data sets
are based upon an algebraic structure R – typically a ring – and a set of variables X. Data
sets themselves consist of certain amalgams based on R and X. For a data element, the
entries from R are the coefficients. If the entries from R in a data element are all removed,
what remains is the structure of the data element. The treatment of data is particularly
important because it directly ties in with the formulation of stability. Namely, stability
as treated in this paper, pertains to stability with respect to variance of the coefficients
of data. Along this line we introduce structured functions (2.3.2). These are functions
which vary as a function of the coefficients of data. Polynomial functions are structured.

As we said, stability is with respect to variance of coefficients. But what does it
mean for coefficients to vary smoothly or for a sequence of coefficients to approach a
given coefficient? To deal with this we introduce a quasi metric structure in Section (3.1)
and give many examples to show that this encompasses many of the types of continuity
typically considered in algebra. For example, this includes the reals, general valuations,
and more. This leads naturally to the definition of convergence and bounds in Section
(3.2). An important kind of bound is that of “convergent bound” which appears in
Section (4.2). A convergent bound is a kind of oracle or measure of continuity for a

6Here and throughout this “Practical Overview” we freely omit technical details when they would
slow-down the story telling. I.e. we try to cover many of the most important ideas and results and give
an indication how they fit together. But we don’t go into the detailed hypotheses of the results. That is
done in the body of the paper.

5



function. Functions with convergent bounds are automatically continuous (4.6.4) and
having a convergent bound might be considered the constructive way to specify continuity.
Polynomial functions have convergent bounds. Having convergent bounds is the main
requirement on functions appearing in algorithms we can stabilize.

Bracket coefficients are one of the key constructions we introduce to stabilize algo-
rithms. Bracket coefficients might be thought of as a kind of algebraicization of interval
arithmetic. They consist of a pair, the first component being an element from R or RM

or the general data set. The second component element is an error measure. Functions
with convergent bounds may be extended to functions on the bracket coefficients. This,
together with appropriate treatment for predicates allows us to extend algorithms which
manipulate data from our original data set to algorithms which manipulate bracket co-
efficients in the original data set.7 Here it is easier to obtain stabilization. In fact, for
suitable non-stable algorithms the extension to bracket coefficients is stable (5.1.2). Typi-
cally, if the original algorithm is denoted “A” then the extended algorithm will be denoted
“BC(A)”.

Stabilizing algorithms entails handling functions and predicates. Up to here we have
primarily discussed functions. Predicates map the data set to the set of two elements:
{“TRUE”,“FALSE”}. Hence most predicates will have points where they are discon-
tinuous. The main restriction on predicates in algorithms we can stabilize is that the
discontinuity points of predicates lie in discrete sets. The way in which we stabilize algo-
rithms by using bracket coefficients is to do what we call rewriting immediately preceding
evaluating predicates. As we said, the first element of a bracket coefficient – call it E –
is from the original data set and the second element is an error bound – call it ε. If E
lies within distance ε of a point of discontinuity of the predicate, then E is replaced by
the point of discontinuity and ε is replaced by 0̂, which means error bound zero. This is
rewriting and the way to handle predicates to achieve stability. Once rewriting is done,
the predicate is then evaluated on the first component of the bracket coefficient. The
continuity and stabilization properties of rewriting are treated at some length. The key
property regarding rewriting is that it preserves convergence and converts some conver-
gence into fast convergence. If a sequence is approaching one of the discontinuities of the
predicate, rewriting causes the sequence to get there fast, i.e. after a finite number of
steps. Hence – after a finite number of steps – the predicate will actually be evaluated at
the discontinuity point. Without rewriting, the predicate may never have been evaluated
at the discontinuity point and since it is discontinuous there, the algorithm may never
have the same behavior. Although we have not spelled it out in great detail, IS ZERO?
exhibits this problem.

As mentioned above, BC(A) denotes the extension of the algorithm A to an algorithm

7This does not change the algorithm. In this sense we give the original algorithm a kind of polymor-
phism and so the original algorithm applies to this other data set/structure. Thanks to Dexter Kozen
for pointing out this interpretation.

6



which deals with bracket coefficients and (5.1.2) is the statement of BC(A) stability.
(5.1.2) has important corollaries. The first (5.1.4) says that if you coerce the output of
BC(A) from bracket coefficients back to the original data set, then you still have stability.
BC(A)R is used to denote BC(A) with its output coerced back to the original data set.
The second corollary (5.1.6) utilizes a method of coercing data from the original data set
to bracket coefficient data. If e lies in the original data set then for positive integers k we
get Ek lying in the bracket coefficient set. The Ek’s form a convergent sequence. Assuming
this gives appropriate input data, we apply BC(A)R to the Ek’s. (5.1.6) says that the
resulting sequence converges to the output obtained by invoking A on input data e. In
fact, one can achieve finite convergence at selected output coefficient values. For example,
one could insure that terms in a polynomial whose coefficients are converging to zero, reach
zero in a finite number of steps.8 This was done for the Buchberger algorithm in [6] and
so the shape9 of the resulting Gröbner basis is determined after a finite number of steps.
Theorem (5.4.11) shows that the preceding can also be accomplished with approximate
computation.

Quantified Convergence

Let us mention a meta lesson learned in the course of writing this paper. The lesson is
that when convergence is required of function1 or of a sequence, the convergence should
be quantified or bounded by function2 which itself is guaranteed or assumed to have
a convergence property. Three examples of this are: convergent approximation (3.1.10),
convergent bound (4.2.1) and approximate computation (5.4.1). What is interesting about
this is that the process stops after one step and it is not necessary to have function3 which
bounds the convergence of function2, where function3 is guaranteed or assumed to have
a convergence property, etc.

Open Questions and Further Work

Before the study of complexity, scientists simply considered whether a problem had an
algorithmic solution. It was only later that we began asking for more quantitative infor-
mation, namely to quantify the complexity of an algorithm and the minimal complexity
of a problem. (5.1.4), (5.1.6) and (5.4.10) all refer to SOV -convergence. This is a type of
convergence where if the convergence is to an element in the set SOV , then the sequence
reaches the element in a finite number of steps. Suppose we are working with polynomi-
als and that zero lies in SOV . Further, suppose that we have output polynomials which
SOV -converge to a specific polynomial of interest. Then after a finite number of steps we
reach output polynomials which have the same shape as the desired polynomial. I.e. we
reach a stage where the output polynomials have precisely the same non-zero terms as

8This is a strong result. It is also frustrating, because we have no bound on when 0 must be achieved.
On the other hand, at first scientists are happy to be able to tell if a problem has an algorithmic solution
and then they begin to study the complexity of the problem.

9I.e. which monomials are present in the various terms of the resulting Gröbner basis.

7



the polynomial of interest, although the coefficients will not necessarily be the same. At
this point, it might be feasible to determine the correct coefficients by another method.
Perhaps by a method using linear algebra. The problem is that we have no bound for
how many steps it takes for the output polynomials to become the correct shape. It is a
qualitative result that this happens but we cannot quantify the number of steps required.
Of course, the number of steps will depend upon the algorithm under study. Also – as
with complexity – there is likely to be average case behaviour, worst case behaviour, etc.
We hope others begin to consider this issue and prove some bounds.

(5.1.2) insures that under certain circumstances convergence is preserved. It is natural
to wonder whether spurious convergence may occur. For example, might an algorithm
fail to terminate normally for some specific input but applied to a sequence converging
to the specific input the algorithm converges normally and yields a convergent sequence
of outputs. (5.6.1) shows that spurious convergence may indeed occur. It is natural to
ask what additional hypotheses on an algorithm or the converging input sequences or the
convergent bounds used to stabilize the algorithm will insure that spurious convergence
cannot occur. The same applies for (5.1.6) and (5.1.4).

The work in this paper shows that it would be feasible to develop a computer algebra
system which gives the user the option to (automatically) stably approximating algo-
rithms. Such a system would be aware of the singularities of its predicates and would be
able to automatically assemble the appropriate S-sets for rewriting a user’s program.

Concluding Remarks

We freely mention [6], the parent of this paper. However, one of the main ideas behind
this paper is much older and we do not know an original reference. Namely the general
idea which in over simplified form is:
1. An algorithm involves data with coefficients from a set A.
2. There is a way to switch to data with coefficients from a set B and it is easier to
compute with these new coefficients.
3. After the computation is done, switch back to data with coefficients from A.
In this spirit let us mention Winkler’s lucky primes, ([8]). It is related to our modular
examples.

2 Fundamentals

2.1 Algorithms

This paper is about stabilizing algorithms which can be expressed in the following general
form.

8



Initialize: Local assignment of input data
step 1: instruction
step 2: instruction
· ·
· ·
· ·

step n: instruction

input data will be drawn from a set S(R; X) to be described later. The sets S(R; X)
will be specific to the area of the algorithm. For example an algorithm to compute
Gröbner bases would generally have a different S(R; X) from an algorithm to perform
fast matrix multiplication. Our algorithms have internal, local variables and Initialize
should be thought of as assigning the input data to the internal, local variables. Here are
three samples of an Initialize line.

• Initialize: (StartingY ear, StartingMonth, StartingDay)

• Initialize: (X,Y, Z1, Z2)

• Initialize: ()

In the last case, no initialization is performed. The variables whose names happen to ap-
pear on the initialize line are assigned the input data at the time an algorithm is invoked.
In this sense an algorithm is somewhat like a function in that an algorithm NumberOf-
MondaysSince with an Initialize line of

• Initialize: (StartingY ear, StartingMonth, StartingDay)

would be invoked
NumberOfMondaysSince (1823, 5, 17)

And if it were so invoked, it would begin with StartingY ear = 1823, StartingMonth = 5,
StartingDay = 17.

instructions come in four flavors:

• “stop with Assignment of output data”

• “goto”

• “conditional goto”

• “local assignment from computation”

9



A “stop” instruction line looks much an Initialize line. Here are three samples how
“stop” instructions might look, omitting the step number of the “stop” instruction line
itself:

• “stop (NumberOfMondays)”

• “stop (X,Z, 17, X)”

• “stop ()”

What appears in the parentheses, if anything, are called “arguments” and are internal,
local variables or elements of S(R; X). Below, we describe how a “stop” instruction and
the other three types of instructions are executed.

Here is a sample how “goto” instructions might look, omitting the step number of the
“goto” instruction line itself:

• “goto step 7”

Here is a sample how “conditional goto” instructions might look, omitting the step
number of the “conditional goto” instruction line itself:

• “goto step 7 if GreaterThan(X,Y)”

What appears in the parentheses of the predicate10, if anything, are called “arguments”
and are internal, local variables or elements of S(R; X).

Here are samples how “local assignment from computation” instructions might look,
omitting the step number of the “local assignment from computation” instruction line
itself:

• “X = Square(Y )”

• “X = Function(X, Y, Z)”

• “X = Y ”

Here Square and Function are functions. Later we describe the criteria for functions to
be admissible. As usual for functions, what appears in the parentheses, if anything, are
called “arguments”. Just as for predicates, arguments here are internal, local variables
or elements of S(R; X). For consistency, in a simple assignment, such as the example

10In this example the “predicate” is GreaterThan() and the arguments are X and Y.

10



X = Y , Y is called an “argument” and must be an internal, local variable or elements of
S(R; X).

An algorithm is executed as shown in the following table. We are assuming that
it began with the assignment of the initial data to any internal, local variables on the
Initialize line and continued at step 1. Suppose now that we are at step i. Also, assume
that any internal, local variables which are arguments have been assigned values from
S(R; X).

at step i: “stop (X1, . . . , Xn)” Execution halts. The algorithm
outputs the sequence consisting
of the values of the Xi’s.

at step i: “goto step j” Local variable assignments are
unchanged. Continue at step j.

at step i: “goto step j if Predicate(X1, . . . , Xn)” Local variable assignments are
unchanged.
“Predicate(X1, . . . , Xn)” is
evaluated. If:
TRUE continue at step j.
FALSE continue at step (i + 1).

at step i: “X = Function(Y1, . . . , Yn)” Function(Y1, . . . , Yn) is evaluated.
The result is assigned to X.
Continue at step (i + 1).

The algorithm together with the input data is said to terminate normally if a “stop
(X1, . . . , Xn)” instruction is reached. In this case, the value(s) of (X1, . . . , Xn) is said to
be the output of invoking the algorithm with the given input data. An algorithm together
with the input data is said to run forever if it keeps performing steps and never reaches
a stop instruction. A so-called infinite loop, runs forever. An algorithm together with
the input data is said to crash if it neither terminates normally nor runs forever. This
could be caused by a “Function” or “Predicate” evaluating on unsuitable data or if a
“goto” or “conditional goto” specifies a step number which does not exist, or if a “stop”,
“conditional goto” or “local assignment from computation” step is reached, where some
of the arguments have not been assigned values, etc.

When we speak of an algorithm’s internal, local variables we also mean that these
variables names are distinct from the values of data in S(R; X) so there can be no am-
biguity whether an argument is meant to be a value assigned to a variable or a specified
element of S(R; X).

11



Let us write the output of invoking an algorithm A with the given input data I, as
A(I).11 The common meaning of deterministic algorithm refers to those which can be
expressed in the specified form. Looping structures such as the “While”, “For”, and
“Repeat” loops, and branching structures such as the “If-then-else” statement can be
expressed with our instructions.

2.2 Data Sets, S(R; X)

Now we build an admissible data set from which input data and other data values are
drawn. To begin let R and X be disjoint sets of formal symbols. The elements of R will
be used for the purpose of approximation, a key ingredient in our stabilization technique.
The elements of X will be used to account for structural elements which do not vary in
approximations. For example, X might be a specific, fixed basis for a vector space and R
might be (a copy of) the coefficient field, perhaps the rationals, reals or complex numbers.
This would be used for stabilizing algorithms by way of approximation in the coefficient
field. The elements of R are referred to as coefficients and the elements of X are referred
to as atoms.

In many examples R will arise from a ring, or other algebraic structure, where there
is one symbol of R for each element of the ring. In such cases the ring element may be
identified with the R symbol, i.e. for a ring element r we may simply write r instead of
Symbolr, when considering it as an element of R. In this case R is not considered to be
a ring. It is still just a set of formal symbols. However, the ring operations would give
certain maps among R and its Cartesian products. For example, negation gives the map
from R to itself sending r to −r. Addition and multiplication give maps from R × R to
R etc.

Consider the disjoint union: R ] X. The elements of R ] X are the indecomposable
data. The final step in specifying admissible values for input data and transition data is
to construct S(R; X), the set of sequences of indecomposable data. More precisely:

1. The empty sequence: “()” is in S(R; X).

2. If d1, . . . , dn ∈ R ]X, then (d1, . . . , dn) ∈ S(R; X). The di’s are not assumed to be
distinct.

By a sequence “(s1, . . . , sn)” we mean the ordered tuple of s1, . . . , sn. When writing a
sequence of indecomposable elements we write the elements surrounded by outer paren-
theses. At times it may be convenient to also have internal parentheses. For example,

11A(I) is like functional notion. It is like A being invoked or evaluated on I. If A does not terminate
normally with the input data I, then A(I) is similar to functional notation where one may write the
expression: “f(a)” although a may not be in the domain of f . In neither case is a value returned.

12



when discussing a realization of a free module, we talk about sequences of pairs, such as:
((r′1, x

′
1), . . . , (r

′
m, x′m)). In this case consider X to also contain symbols: “(”, and “)” and

that we have a convention of omitting commas around the internal parentheses. When
we discuss sequences of sequences in S(R; X), please just assume that we have “(”, and
“)” in X, even if we have not explicitly mentioned the fact. If “(”,“)”∈ X then S(R; X)
contains sequences with unbalanced internal parentheses. However, independently of “(”,
and “)”, S(R; X) contains a lot of garbage that we do not care about. Part of the game
is to ignore the garbage by selecting useful subsets of S(R; X) from which input data and
transition data are drawn. The set T ⊂ S(R; X), in the example below of a free module,
is such a useful subset.

The definition of S(R; X) only depends on R ] X as a set. I.e. we could have
defined S(D) where D is any set. However, R and X play distinctly different roles in
what follows and they induce specific functions on S(R; X). That is why the notation
“S(R; X)” preserves the individuality of R and X.

There are concepts of structure and coefficients for elements of S(R; X). These con-
cepts will allow us to vary coefficient entries of data while preserving the structural in-
tegrity, which is one of the fundamental techniques in this paper.

For s ∈ S(R; X) let ]s be the number of entries from R which appear in s. Du-
plicates must be counted with their multiplicity. For example, ](r, x, r, y, r) = 3 =
](r, (x, (r, (y, r)))) if r ∈ R and x, y ∈ X. (Of course “(”,“)”∈ X also, but we gener-
ally do not explicitly mention this.) Another example, ](x, (y, z)) = 0. Let ∗ be an
element which is not in X and form S({∗}; X). There is a natural map, also denoted
∗, from S(R; X) to S({∗}; X), namely, replace each element of R by ∗. For example,
∗(p, x, q, y, r) = (∗, x, ∗, y, ∗) and ∗(p, (x, (q, (y, r)))) = (∗, (x, (∗, (y, ∗)))) if p, q, r ∈ R and
x, y ∈ X. This map satisfies: for any s ∈ S(R; X): ]s = ]∗s. The map ∗ should be
thought of as isolating the structure of an element by means of removing the specific
coefficients, i.e. elements of R.

Coefficients are captured by maps to Ri for various i.12 Let S(R; X)i be the elements s
of S(R; X) with ]s equal to i. κ : S(R; X)i → Ri is now defined. For s ∈ S(R; X)i, κ(s) is
obtained by deleting all elements of X (including any internal parentheses) and preserving
the order of what remains. For example, κ(p, x, q, y, r) = (p, q, r) = κ(p, (y, (q, (x, r))))
and κ(x, y, z) = () = κ(z, (x, y)). Elements of S(R; X) may be recovered from their
structure and coefficients. For each natural number i there is a map 〈, 〉 : S({∗}; X)i ×
Ri → S(R; X)i. 〈u, (r1, . . . , ri)〉 is defined by replacing the first, from left to right, ∗
in u by r1, then the next ∗ in u by r2, etc. After i steps one has replaced all the
∗’s in u by r1, . . . , ri. For example, 〈(∗, (x, (∗, (y, ∗)))), (p, q, r)〉 = (p, (x, (q, (y, r)))) and
〈(x, (y, z)), ()〉 = (x, (y, z)). Although obvious, it is worth noting that: ∗〈u, (r1, . . . , ri)〉 =

12For positive integers i, Ri = R × · · · × R, i-times. R0 is identified with the set of one element {()}
where that element is an empty sequence. So, R0 has cardinality one, not zero.

13



u and κ〈u, (r1, . . . , ri)〉 = (r1, . . . , ri).

The precise statement that elements of S(R; X) may be recovered from their structure
and coefficients is the equation: s = 〈∗s, κ(s)〉 which holds for all s ∈ S(R; X). The
equation is most easily understood in the terms: “if one strips the elements of R out of s
and then puts them back in the same positions, one recovers s.”

We have shown that S(R; X) is in one-to-one correspondence with the disjoint union
of S({∗}; X)i × Ri for i = 0, 1, 2, . . .. This underlies all that follows. For example, the
definition a bit later of structured function depends upon this decomposition and could be
formulated for other data structures than S(R; X) which are the disjoint union of copies
of Ri times other sets, where times means Cartesian product.

The last bit of notation in this section is a second interpretation of S({∗}; X) or
S({∗}; X)i. Namely, one may view elements of S({∗}; X)i as functions from Ri to
S(R; X)i. More specifically:

2.2.1 NOTATION for S({∗}; X) as Functions: For u ∈ S({∗}; X)i we consider:

u : Ri → S(R; X)i, r → 〈u, r〉

For u ∈ S({∗}; X)i, we typically overbar u when considering u as a function from Ri to
S(R; X)i.

Eliminating “〈, 〉” from the notation considerably simplifies later equations.

2.3 Structured Functions and Algorithms

Functions between subsets of S(R; X) are among the main objects of study in this paper
because they are among the main things we must stabilize. An important concept is that
of a function being structured. In words, this means that the structure of the image of an
element varies as a function of the structure of the element. This implies that on elements
of the same structure, the coefficients of the images of elements vary as a function of the
coefficients of the elements. Structured functions – and related concepts – help distinguish
the algorithms of interest.

2.3.1 DEFINITION Structured Algorithms:

An algorithm is called structured if it satisfies the following:

(A1) input data ∈ S(R; X).

(A2) Every “function” is structured.

14



(A3) Every “predicate” is a function from a subset of S(R; X) to the set with two ele-
ments: {TRUE, FALSE}.

2.3.2 DEFINITION Structured Function: Let S, T ⊆ S(R; X) and ϕ : S → T .
ϕ is a structured function if for all s1, s2 ∈ S:

∗ϕ(s1) = ∗ϕ(s2) if ∗s1 = ∗s2

Note that in the definition of structured function, either or both of S and T may be
empty or may be equal to S(R; X) itself.13 Let ∗S ⊂ S({∗}; X) be defined as: {b ∈
S({∗}; X)| there exists s ∈ S with b = ∗s}. In other words, ∗S is the image of S under
the map: ∗ : S(R; X) → S({∗}; X). If {} is the empty set then S(R; {}) is simply the
disjoint union: R0 ]R1 ]R2 ] · · ·. We use the simpler notation R? for this set. Note that
] on R? is simply the constant n on Rn.

Structured functions are characterized as follows:

2.3.3 LEMMA: ϕ is structured if and only if there are functions Struc : ∗S → ∗T
and γ : S → R? where for all s ∈ S: ]Struc(∗s) = ]γ(s) and

2.3.4 ϕ(s) = 〈Struc(∗s), γ(s)〉

In this case: Struc and γ are uniquely determined by ϕ. γ is simply the composite κϕ.

PROOF: Assume Struc and γ are maps with the stated properties. Apply ∗ to both
sides of (2.3.4) giving: ∗ϕ(s) = Struc(∗s). Hence ∗ϕ(s1) = ∗ϕ(s2) if ∗s1 = ∗s2 and ϕ is
structured.

Conversely suppose that ϕ is structured. Then s → ∗ϕ(s) only depends on ∗s and
so there is a unique function: Struc : ∗S → S({∗}; X) where ∗ϕ(s) = Struc(∗s). Then
(2.3.4) follows, with the composite κϕ used for γ, from the fact that ϕ(s) = 〈∗ϕ(s), κϕ(s)〉
after substituting Struc(∗s) for ∗ϕ(s).

The remaining details are left to the reader.

While γ is simply the composite κϕ, Struc does not generally have such a simple
expression.

2.3.5 NOTATION for STRUCTURE MAP of ϕ: Let “Strucϕ” indicate the
“Struc” map corresponding to the structured function ϕ. When the meaning is clear from
the context, we simply use “ϕ” itself to stand for “Strucϕ”.

13There are not many structured functions from S to T when S or T are empty. However, allowing
these degenerate cases keeps the definition simple and obviates special cases in later arguments.

15



The meaning generally is clear from the context because the domain of the original
structured function ϕ is a subset of S(R; X) and the domain of “ϕ” standing for “Strucϕ”
is a subset of S({∗}; X). Thus the argument “arg” in “ϕ(arg)” indicates which meaning
of “ϕ” is relevant. (2.4.2) illustrates the two usages of “ϕ” in close proximity. Where
“Strucϕ” occurs without an argument, we typically must specify “Strucϕ” and cannot
simply use “ϕ”. This is illustrated in (2.4.3).

As mentioned preceding Definition (2.3.2), if a structured function ϕ : S → T is
restricted to elements of the same structure, the coefficients of the images of elements
vary as a function of the coefficients of the elements. These maps are defined in (2.4.2.d)
below. It is precisely these functions14 which must be controlled to achieve stabilization.
These considerations get rather technical and are quarantined to the next section which
we recommend skipping until the results are called upon.

2.4 Technical Results about Structured Functions

We shall see how structured functions are themselves structured. I.e. how they are put
together from component parts.

2.4.1 DEFINITION: Let S ⊆ S(R; X) and let z ∈ S({∗}; X).

a. Sz denotes {s ∈ S|∗s = z}. In other words, Sz is the set of elements of S which
have the structure z.

b. κSz denotes κ(Sz). In other words, κSz is the set of coefficients of the elements in
Sz.

Sz or κSz may be empty. They are not empty if and only if z ∈ ∗S. Frequently, z =
∗s0 for s0 ∈ S and we write: S∗s0 and κS∗s0 . S∗s0 and κS∗s0 are never empty; specifically,
s0 ∈ S∗s0 and κ(s0) ∈ κS∗s0 . Assertion (a) in the following should be thought of as saying
that S is partitioned into slices Sz.

15 Assertion (b) says that elements lying in the same
slice are uniquely determined by their coefficients. Assertion (g) shows how a structured
function restricted to a slice may be expressed in terms of the coefficients of elements of
the slice.

2.4.2 LEMMA-DEFINITION: Let S, T ⊆ S(R; X), ϕ : S → T a structured func-
tion and z ∈ ∗S.

a. S = ]z∈∗SSz, where ] denotes “disjoint union”.

14While these are the functions which must be controlled, predicates must be handled as well.
15These are the slices in (4.5.10) which is said to proceed slice-by-slice.

16



b. The map z arising from z, as defined at (2.2.1), is inverse to κz defined:

κz : Sz → κSz, s → κ(s)

c. ϕ(Sz) ⊂ Tϕ(z).

d. DEFINE: κϕz : κSz → κTϕ(z) as the composite of the three maps:

κSz
z→ Sz

ϕ|Sz→ Tϕ(z)

κϕ(z)→ κTϕ(z)

e. If u ∈ κSz and q ∈ Sz with κ(q) = u then q is the unique element p ∈ Sz with κ(p)
= u. In addition, κϕz(u) = κϕ(q).

f. The following two composites are equal:

κSz
z→ Sz

ϕ|Sz→ Tϕ(z) and κSz
κϕz→ κTϕ(z)

ϕ(z)→ Tϕ(z)

or equivalently ϕ|Sz : Sz → Tϕ(z) equals the composite:

Sz
κz→ κSz

κϕz→ κTϕ(z)
ϕ(z)→ Tϕ(z)

g. For s ∈ Sz,
ϕ(s) = 〈ϕ(z), κϕz(κs)〉

and hence for any t ∈ S:
ϕ(t) = 〈ϕ(∗t), κϕ∗t(κt)〉

PROOF: The details are left to the reader.

2.4.3 DEFINITION: Strucϕ (2.3.5) is called the structure function of ϕ and the
κϕz’s are the coefficient functions of ϕ. We continue to use “ϕ” for “Strucϕ” when the
meaning is clear from context.

(2.4.2,g) shows how ϕ is put together or structured from Strucϕ and the κϕz’s.

2.4.4 PROPOSITION Structure of Structured Functions: Let S, T ⊆ S(R; X).
Suppose that Struc : ∗S → ∗T and for each z ∈ ∗S there is a map Coef(z) : κSz →
κTStruc(z). Define the map ϕ : S → T by defining for each z ∈ ∗S the restriction
ϕ|Sz : Sz → TStruc(z) as the composite:

Sz
κz→ κSz

Coef(z)→ κTStruc(z)
Struc(z)→ TStruc(z)

Then ϕ is a structured function, Strucϕ = Struc and for each z ∈ ∗S, κϕz = Coef(z).

17



PROOF: Again, the details are left to the reader.

Stabilization of algorithms depends upon stabilization of predicates and structured
functions. Stabilization of structured functions depends upon stabilization of their coef-
ficient functions. Later we specify conditions which coefficient functions must satisfy for
the purpose of stabilization. But first we tell how structured functions and their coefficient
functions behave with respect to basic set theoretic constructions.

2.4.5 LEMMA: Suppose that A,B, C, D ⊆ S(R; X) and that α : A → C, β : B → D
are structured functions. Suppose that a0 ∈ A and b0 ∈ B so that ∗a0 ∈ ∗A and ∗b0 ∈ ∗B.

a. α×β : A×B → C×D, (a, b) → (α(a), β(b)) is a structured function. κ(A×B)∗(a0,b0)

coincides with κA∗a0 × κB∗b0 and κ(α× β)∗(a0, b0) = κα∗a0 × κβ∗b0.

b. If D ⊆ A then the composite map: αβ is structured and if β(b0) = a0 then καβ∗b0

is the composite map: κα∗a0 ◦ κβ∗b0.

The following general set theoretic functions are structured functions.

c. Constant functions from A to C. If γ is the constant function sending A to c ∈ C,
then κγ∗a0 is the constant function sending κA∗a0 to κ(c).

d. Diagonal functions, ∆` : A → A`, for each non-negative integer `, sending elements
a ∈ A to (a, . . . , a), `-times. For ` = 0 this is just the constant function to a one point set.
For ` = 1 this is just the identity function from A to itself. κA`∗(a0,...,a0) coincides with
κA∗a0 × · · · × κA∗a0 = κA∗a0

` and κ∆`∗a0 is just the diagonal function: κA∗a0 → κA∗a0

`.

e. Projection functions such as: ΠA : A×B → A, (a, b) → a. κ(A×B)∗(a0,b0) coincides

with κA∗a0 × κB∗b0 and κΠA∗(a0, b0) is the projection function

ΠκA∗a0
: κA∗a0 × κB∗b0 → κA∗a0

Similarly for projection onto B.

f. Permutation functions such as A` → A`, such as (a1, . . . , a`) → (ae1 , . . . , ae`
)

where (e1, . . . , e`) is a permutation of (1, . . . , `). Suppose that γ denotes this function and
a′1, . . . , a

′
` ∈ A. κA`∗(a′1,...,a′

`
) coincides with κA∗a′1 × · · · × κA∗a′

`
and κγ∗(a′1, . . . , a′`) is the

map:
κA∗a′1 × · · · × κA∗a′

`
→ κA∗a′e1 × · · · × κA∗a′e`

(v1, . . . , v`) → (ve1 , . . . , ve`
)

g. For c ∈ S(R; X) the function A → A × {c}, a → (a, c). Suppose that γ denotes
this function. κ(A× {c})∗(a0,c) coincides with κA∗a0 × {κ(c)} and

κγ∗a0 : κA∗a0 → κA∗a0 × {κ(c)}, v → (v, κ(c))

18



PROOF: We outline the major ideas and leave most of the details to the reader.

First we verify the structuredness. (a), (e), (f) and (g) follow from the fact that ∗(u, v)
= (∗u, ∗v) and (d) simply uses: ∗(a, . . . , a) = (∗a, . . . , ∗a). Alternatively for (g), it is
(Identity × Constant) composed with Diagonal and by parts (a–d) this implies that (g)
gives structured maps.

(b) Since β is structured if b, b′ ∈ B with ∗b = ∗b′ then ∗β(b) = ∗β(b′) and so ∗αβ(b)
= ∗αβ(b′) because α is structured.

(c) If γ is a constant function then γ(a) = γ(a′) for a, a′ ∈ A so ∗γ(a) = ∗γ(a′).

Next we partly verify the claimed coefficient functions, and leave much to the reader.

Claims such as:

κ(A×B)∗(a0,b0) coincides with κA∗a0 × κB∗b0

found in (a), follow from the fact that κ(u, v) = (κ(u), κ(v)). (d), (e), (f) and (g) have
similar claims which follow for similar reasons. Let us verify the rest of (a) and also (b).

Suppose that v ∈ κA∗a0 . Let a ∈ A∗a0 be the unique element where κ(a) = v. Then
κα∗a0(v) = κα(a). Similarly if w ∈ κB∗b0 and b ∈ B∗b0 is the unique element where κ(b)
= w, then κβ∗b0(w) = κβ(b). Since (a, b) is the unique element x ∈ A∗a0 × B∗b0 where
κ(x) = (v, w) it follows that: κ(α× β)∗(a0, b0)(v, w) = κ(α× β)(a, b) = (κα(a), κβ(b)) =
(κα∗a0(v), κβ∗b0(w)). In other words: κ(α× β)∗(a0, b0) = κα∗a0 × κβ∗b0 as asserted.

Here is (b). Suppose that w ∈ κB∗b0 . Let b ∈ B∗b0 be the unique element where
κ(b) = w so that κβ∗b0(w) = κβ(b) and καβ∗b0(w) = καβ(b). Since b ∈ B∗b0 and β is
structured, it follows that β(b) ∈ D∗β(b0) and D∗β(b0) ⊆ A∗a0 since β(b0) = a0. Hence,
the image of κβ∗b0 lies in the domain of κα∗a0 and the composite is defined. Also, since
κβ(b) = κβ∗b0(w), β(b) must be the unique element x ∈ A∗a0 where κ(x) = κβ∗b0(w).
Thus κα∗a0 ◦ κβ∗b0(w) = καβ(b) which we already observed equals καβ∗b0(w).

The rest is left to the reader.

2.4.6 DEFINITION Closed under Composition and Cartesian Construc-
tion:

Let E be a set of structured functions mapping some subsets of S(R; X) to other subsets
of S(R; X). E is called C4 if properties (a–g) hold. Here, A,B, C,D ⊆ S(R; X) and
α : A → C, β : B → D are maps in E.

Let F be a set of functions mapping some subsets of Rm to Rn for various m’s and
n’s. F is called C4 if properties (A–G) hold. Here, A ⊆ Rm, C ⊆ Rn, B ⊆ Rm′

, D ⊆ Rn′

and α : A → C, β : B → D are maps in F .

a. The product map α× β : A×B → C ×D, (a, b) → (α(a), β(b)) is in E.

19



b. If D ⊆ A then the composite map: αβ is in E.

The following general set theoretic functions are in E.

c. Constant functions from A to C.

d. Diagonal functions, ∆` : A → A`, for each non-negative integer `, sending elements
a ∈ A to (a, . . . , a), `-times.

e. Projection functions such as: ΠA : A × B → A, (a, b) → a. And similarly for
projection onto B.

f. Permutation functions such as A` → A`, such as (a1, . . . , a`) → (ae1 , . . . , ae`
) where

(e1, . . . , e`) is a permutation of (1, . . . , `).

g. For c ∈ S(R; X) the function A → A× {c}, a → (a, c).

A. The product map α× β : A×B → C ×D, (a, b) → (α(a), β(b)) is in F .

B. If D ⊆ A then the composite map: αβ is in F .

The following general set theoretic functions are in F :

C. Constant functions from A to C.

D. Diagonal functions, δ` : A → A`, for each non-negative integer `, sending elements
a ∈ A to (a, . . . , a), `-times.

E. Projection functions such as: πA : A × B → A, (a, b) → a. And similarly for
projection onto B.

F. Permutation functions such as A` → A`, such as (a1, . . . , a`) → (ae1 , . . . , ae`
) where

(e1, . . . , e`) is a permutation of (1, . . . , `).

G. For c ∈ Rn the function A → A× {c}, a → (a, c).16

In both the E and F cases, (g) or (G) is given by (Identity × Constant) composed
with Diagonal. By parts (a–d) it follows that (g) is in E or F .

Notice that given a set U of structured functions mapping some subsets of S(R; X)
to other subsets of S(R; X), one can build up or generate a smallest “C4” set containing
U . This set is denoted C4(U). One begins with the set U , adds in all maps of type (c–g)
which are not there already, and then adds in all maps which can be expressed as iterated
products and composites, so that (a) and (b) will be satisfied. Similarly, given a set V of
functions mapping some subsets of Rm to Rn for various m’s and n’s one can build up
or generate a smallest “C4” set containing V . This set is denoted C4(V). The process is
similar to the construction of C4(U) and in both cases the precise details are left to the
reader.

16Consider A× {c} ⊆ A×Rn.

20



2.4.7 PROPOSITION Closed under Composition and Cartesian Construc-
tion: Let U be a set of structured functions mapping some subsets of S(R; X) to other
subsets of S(R; X). Let V be a set of functions mapping some subsets of Rm to Rn for
various m’s and n’s. Assume that for each A,C ⊆ S(R; X) and map α : A → C in U and
element z ∈ ∗A, the map καz lies in V. Then if B, D ⊆ S(R; X) and the map β : B → D
lies in C4(U), and z ∈ ∗B it follows that κβz ∈ C4(V).

PROOF: This follows from Lemma (2.4.5)

Structured Algorithms are too large a class of algorithms to stabilize. The purpose of
introducing F Functioned Algorithms is to specify a subclass of structured algorithms by
putting restrictions on the coefficient functions which may appear. This is appropriate
since our approach to stability depends upon stabilizing the coefficient functions and
stabilizing the predicates.17 The restriction we put on coefficient functions is to insist
that they come from the specified class of functions: F . Because this paper specializes in
stabilizing algorithms in ring theory, coefficients will typically be drawn from a ring and
the class F will frequently be specialized to polynomial functions.18

Suppose that F is a C4 set of functions mapping some subsets of Rm to Rn for various
m’s and n’s. Here is what it means for a structured algorithm to be based upon F .

2.4.8 DEFINITION F Functioned Algorithms: An algorithm A is an F Func-
tioned Algorithm if

• A is a structured algorithm, (2.3.1).

• The coefficient functions (2.4.3) of A lie in F . I.e. for every “local assignment
from computation” step in A:

at step i: “X = Function(Y1, . . . , Yn)”

where Function : S → T for S, T ⊆ S(R; X) and element z ∈ ∗S, the map
κFunctionz : κSz → κTFunction(z) lies in F .

17We shall get control of the predicates in an extremely different fashion from how we get control of
the coefficient functions. We shall introduce discontinuity sets of predicates and an entire mechanism
of bracket coefficients and bracket coefficient (term) rewriting to deal with predicates. Bracket coeffi-
cients and rewriting also have another payoff, they permit the use of approximate computation to stably
approximate exact computation.

18For some purposes, it may be convenient or necessary to allow additional functions which might
include division, square root, differentiation, etc. As will be explained in Section (3) and Section (4.2),
when introducing additional functions one must define corresponding suitable functions in a partially
ordered set and in the set of bracket coefficients, so as to guarantee a good propagation of errors like
Lemma (4.2.9) in Section (4.2).

21



We now present Polynomial Functions, which is a C4 class of functions. Suppose that
R is (a copy of) a ring and P maps (a subset of) Rm to (a subset of) Rn. Then P has
component functions (P1, . . . , Pn) where each Pi is a function of m variables.

2.4.9 DEFINITION Polynomial functions: P is polynomial if all of the Pi’s are
polynomial19 functions.

2.4.10 DEFINITION POLY: POLY denotes the set of polynomial functions from
subsets of Rm to Rn for various m’s and n’s.

It is left for the reader to check that POLY is C4. The reader may also check that
POLY is generated20 by the polynomial functions from (subsets of) Rm to R for various
m’s.

2.4.11 DEFINITION Algebraic Algorithms: A POLY Functioned Algorithm is
called an Algebraic Algorithm.

(2.4.7) has the following important corollary for algebraic algorithms.

2.4.12 PROPOSITION Ubiquity of Algebraic Algorithms: Let U be a set
of structured functions mapping some subsets of S(R; X) to other subsets of S(R; X).
Assume that for each A,C ⊆ S(R; X) and map α : A → C in U and element z ∈ ∗A, the
map καz is a polynomial function. Then if B, D ⊆ S(R; X) and the map β : B → D lies
in C4(U), and z ∈ ∗B it follows that κβz is a polynomial function. Hence, any algorithm
whose functions lie in C4(U) is an algebraic algorithm.

2.5 Structured Functions in the Representation of a Free Mod-
ule

Here is an extended example which illustrates structured functions in the representation of
a free module and an algebra structure on the free module. The free module and then the
algebra is represented by T ⊂ S(R; X). Using that POLY is C4 and working through
the presentation of the example shows that the various module structure operations:
Zero,N, S,A are polynomial functions. So are the algebra structure operations: One, P .

19This means that the function Pi is a polynomial with coefficients in R. Also, unless the ring R is
commutative, the coefficients and variables of Pi(Z1, . . . , Zm) are not assumed to commute.

20Generated as described above (2.4.7).

22



R is a copy of the ring which the free module is a module over. X contains Y a copy
of the basis of the free module. X also contains: “(” and “)”. If one were simultaneously
working with several free modules, each of their bases would be subsets of X.

Certain elements of S(R; X) – but not all – are used to represent elements of the free
module. The subset of S(R; X) we use to represent elements of the free module is the
set of all finite sequences of pairs ((r1

′, y1
′), . . . , (rm

′, ym
′)) with ri

′ ∈ R, yi
′ ∈ Y and the

yi
′’s distinct. Denote this set by T . Since R is a copy of the ring, for extra clarity in this

example, we will typically indicate elements of R as r′ where r lies in the ring. Similarly,
in this example, we indicate elements of Y as y′ where y is in the given basis for the free
module. With this convention a sequence ((r1

′, y1
′), . . . , (rm

′, ym
′)) ∈ T should be thought

of as representing
∑m

i=1 riyi in the free module. Any such sequence with all of the ri’s
equal to 0 ∈ R represents 0 in the free module. We also consider the empty sequence to
lie in T and it also represents 0. Because ri’s may be zero, and yi

′’s may occur in any
order, elements of the free module do not have unique representation.21

This definition of T lies between the one extreme of using a subset of T where elements
of the free module would have unique representation and the other extreme of dropping the
condition of the yi

′’s being distinct. In the latter case a sequence ((r1
′, y1

′), . . . , (rm
′, ym

′))
would still represent

∑m
i=1 riyi in the free module. Our intermediate choice of T is based

upon a balance between the two considerations of giving adequate representation of ele-
ments of the free module and the module operations and algorithms involving the module
being structured and easy to describe. When discussing sum in the free module we point
out the necessity of lack of uniqueness of representation of elements of the free module.

In this example the module operations will be structured functions. Let us
start with N , negation. N : T → S(R; X), where N((r1

′, y1
′), . . . , (rm

′, ym
′))

= ((−r1
′, y1

′), . . . , (−rm
′, ym

′)). Here, for r′ ∈ R, −r′ means (−r)′. Using
∗((r1

′, y1
′), . . . , (rm

′, ym
′)) = ((∗, y1

′), . . . , (∗, ym
′)) = ∗N((r1

′, y1
′), . . . , (rm

′, ym
′)) it follows

that N is a structured function.

Let us now do S, summation in the free module. Let T 2 ⊂ S(R; X) be the set of
pairs (t1, t2) with t1, t2 ∈ T . T 2 may be thought of as T × T . The definition of S
is based upon having an operation u on pairs of sequences ((x1

′, . . . , x`
′), (y1

′, . . . , ym
′))

where the xi
′’s are distinct elements of Y and the yi

′’s are distinct elements of Y .
u((x1

′, . . . , x`
′), (y1

′, . . . , ym
′)) must be (z1

′, . . . , zn
′) where the zi

′’s are distinct elements
of Y with {x1

′, . . . , x`
′} ∪ {y1

′, . . . , ym
′} = {z1

′, . . . , zn
′}. One such u is given as fol-

lows. Let z1
′ = x1

′, . . . , z`
′ = x`

′. If any yi
′’s do not occur among the xi

′’s let z`+1
′

be the first of the yi
′’s which do not occur, let z`+2

′ be the second of the yi
′’s which

do not occur, etc. In any case, say u is such an operation. S(t1, t2) is defined as fol-
lows: if t1 = ((p1

′, x1
′), . . . , (p`

′, x`
′)) and t2 = ((q1

′, y1
′), . . . , (qm

′, ym
′)) then S(t1, t2) =

21For example, ((r1
′, y1

′)) and ((r1
′, y1

′), (0′, y2
′)) and ((0′, y2

′), (r1
′, y1

′)) all represent the same element
of the free module.

23



((r1
′, z1

′), . . . , (rn
′, zn

′)) where (z1
′, . . . , zn

′) = u((x1
′, . . . , x`

′), (y1
′, . . . , ym

′)) and the rk
′’s

are given by:

rk
′ =





(pi + qj)
′ if zk

′ = xi
′ and zk

′ = yj
′

pi
′ if zk

′ = xi
′ and zk

′ does not equal any yj
′

qj
′ if zk

′ = yj
′ and zk

′ does not equal any xi
′

Notice that ∗S(t1, t2) = ((∗, z1
′), . . . , (∗, zn

′)) and hence is determined by
u((x1

′, . . . , x`
′), (y1

′, . . . , ym
′)) which is determined by ((∗, x1

′), . . . , (∗, x`
′)) = ∗t1 and

((∗, y1
′), . . . , (∗, ym

′)) = ∗t2. Hence S is a structured function.

Achieving uniqueness of representation of elements of the free module – by a different
choice of T – is a tempting goal. It appears to be a poisoned attraction. Let us look at
a particular case where x1 = y1, x2 = y2. Then S(((p1, x1), (p2, x2)), ((q1, x1), (q2, x2))) =
((p1 + q1, x1), (p2 + q2, x2)). If one wished uniqueness of representation of the elements of
the module, one might modify S by specifying: omit “(pi + qi, xi)” if pi + qi = 0 in the
ring. S would no longer be structured because ∗S(((p1, x1), (p2, x2)), ((q1, x1), (q2, x2)))
would be ((∗, x1), (∗, x2)) or ((∗, x1)) or ((∗, x2)) or (), depending on (p1, p2, q1, q2) =
κ(((p1, x1), (p2, x2)), ((q1, x1), (q2, x2))). In other words: ∗S(s) would no longer simply
depend upon ∗s.

S expresses the sum of two elements. For later use it will be handy to handle the sum
of more than two elements at a time. This is easily done in terms of S and illustrates
additional material we have presented. Let T h ⊂ S(R; X) be the set of h-tuples (t1, . . . , th)
with t1, . . . , th ∈ T . Think of T h as T × · · · × T , h-times. Let S1 : T → T be the identity
map and assume by induction that Sh : T h → T has been defined and is structured.
Sh+1(t0, t1, . . . , th) is defined as S(t0, Sh(t1, . . . , th)). This is the composition of S with
Identity×Sh. By Lemma (2.4.5) it follows that Sh+1 is structured. Of course S2 equals
S. From now on use S to denote all the Si’s and consider S : T+ → T where T+ is the
disjoint union: T 1 ] T 2 ] T 3 ] · · · and S acts as Sh on T h.

The action of the ring on the module is captured by A. Let RT ⊂ S(R; X) denote the
set of pairs (r′, s) with r′ ∈ R and s ∈ T . If s = ((r1

′, y1
′), . . . , (rm

′, ym
′)) then A(r′, s) =

((rr1
′, y1

′), . . . , (rrm
′, ym

′)), where rri
′ equals (rri)

′. Here ∗(r′, s) = (∗, (∗, y1
′), . . . , (∗, ym

′))
and ∗A(r′, s) = ((∗, y1

′), . . . , (∗, ym
′)) so that A : RT → T is structured.

The module element zero is captured by a zero arity map Zero to T , i.e. an element
of T . Choose and fix any finite set of distinct elements y1

′, . . . , yn
′ ∈ Y . Let Zero

be ((0′, y1
′), . . . , (0′, yn

′)) ∈ T . Constants or zero arity maps are structured by (c) of
Lemma (2.4.5). If n = 0 one is using the empty set to represent zero. This is fine when
there is just one free module but if several free modules are present, one might have to
be careful for which free module () was representing the zero element.

Now assume that the underlying ring is commutative and let us extend this example to
make the free module into an algebra (with unit) over the underlying ring. This involves

24



giving two more operations which are structured functions. The first operation represents
the multiplicative unit of the algebra. This operation has arity zero and is automatically
structured by (c) of Lemma (2.4.5). In terms of our representation of the module by T ,
the multiplicative unit is represented in T by: u = ((r1

′, y1
′), . . . , (rm

′, ym
′)) ∈ T , where

the actual multiplicative unit in the algebra is equal to:
∑m

i=1 riyi. Call this element One
and consider it a zero arity map.

Last we must give the operation corresponding to the product structure on the algebra.
The product of basis elements x and y of the algebra is a linear combination of basis
elements, say

∑
i rizi with ri’s in the ring and zi’s basis elements. Let tx,y ∈ T represent∑

i rizi in the module. Then for p, q in the ring the product (px)(qy) =
∑

i pqrizi is
represented by A(pq, tx,y). Let RY = {(p′, y′)|p is in the ring and y is an element in the
basis for the algebra} ⊂ S(R; X). ∗(pq′, tx,y) = (∗, ∗tx,y) and so is determined by x and
y and hence by ((∗, x′), (∗, y′)) = ∗((p′, x′), (q′, y′)). It follows that the map γ : RY 2 →
RT, ((p′, x′), (q′, y′)) → (pq′, tx,y) is structured.

The next step is based upon distributivity and flattening a product of two sums. I.e.
in a ring:

(u1 + · · ·+ u`)(v1 + · · ·+ vm) =

(u1v1 + · · ·+ u1vm) + (u2v1 + · · ·+ u2vm) + · · ·+ (u`v1 + · · ·+ u`vm)

Let flat : T 2 → (RY 2)+,

(((p1
′, x1

′), . . . , (p`
′, x`

′)), ((q1
′, y1

′), . . . , (qm
′, ym

′))) →

(((p1
′, x1

′), (q1
′, y1

′)), . . . , ((p1
′, x1

′), (qm
′, ym

′)),

((p2
′, x2

′), (q1
′, y1

′)), . . . , ((p2
′, x2

′), (qm
′, ym

′)),

. . . ,

((p`
′, x`

′), (q1
′, y1

′)), . . . , ((p`
′, x`

′), (qm
′, ym

′)))

flat is structured because it simply rearranges structure. The composite: SA+γ+flat :
T 2 → (RY 2)+ → RT+ → T+ → T is structured because each of the factors is structured.
Note that for f : S → T both f ∗ : S∗ → T ∗ and f+ : S+ → T+ are defined as fh =
f × · · · × f , h-times on Sh. Let P denote the composite and let the reader check that:
P = SA+γ+flat : T 2 → T correctly corresponds to algebra product.

This completes the example of free module and algebra.

2.6 Examples of Other Algebraic Structures and Algorithms

Many algorithms in computational algebra are algebraic.

25



Suppose that P (Z1, . . . , Zn) is a polynomial with coefficients from the algebra repre-
sented by T . The coefficients of P are not assumed to commute with the variables nor
are the variables assumed to commute with each other. Considering T n ⊂ S(R; X), then
evaluating P at elements of T n maps T n to T . We leave to the reader to show that this
is a polynomial function. This enables us to give examples of some algebraic algorithms.

2.6.1 DETERMINANT: Consider the determinant of a matrix. There are many
ways to compute this, here is one which shows that computing the determinant of a matrix
is an algebraic algorithm. To begin, consider an n×n-matrix, (Zi,j), where the Zi,j’s are
variables in Z[{Zi,j}]. |Zi,j|, the determinant of (Zi,j) is a polynomial in n2 variables
in Z[{Zi,j}]. Now consider n×n-matrices over R where R is (a copy of) a commutative
ring. Flatten the matrices so that they are represented by a sequence of n2 elements of R.
Flatten |Zi,j| according to the same method used to flatten matrices so that evaluating the
polynomial |Zi,j| on a sequence of n2 elements of R coincides with taking the determinant
of the corresponding matrix. Now the algorithm for computing determinant is:

Initialize: (r1, . . . , rn2)
step 1: Answer = |Zi,j|(r1, . . . , rn2)
step 2: stop (Answer)

Call this algorithm DET n. It is algebraic because step 1 is polynomial.

2.6.2 DISCRIMINANT: This example is based upon computing discriminants of
polynomials. See [5] for details about the discriminant of a polynomial. Suppose the
underlying ring is commutative and an integral domain. Consider the degree n polynomial
P (Y ) = Z0Y

n + Z1Y
n−1 + · · · + Zn−1Y + Zn ∈ Z[{Zi}][Y ]. The resultant of P and its

derivative, with respect to Y , may be computed as the determinant of the Sylvester matrix
coming from P and its derivative. This determinant is a polynomial: D(Z0, . . . , Zn) ∈
Z[{Zi}]. Here is an algebraic algorithm which operates on degree n polynomials with
coefficients from R.

Initialize: (Z0, . . . , Zn)
step 1: Answer = D(Z0, . . . , Zn)
step 2: goto step 4 if Answer = 0
step 3: stop (1)
step 4: stop (0)

Call this algorithm DISCn. Suppose that Q(Y ) = r0Y
n + r1Y

n−1 + · · ·+ rn−1Y + rn is
a polynomial and that Q(Y ) is strictly of degree n in the sense that r0 is not zero. Answer
is set equal to D(r0, . . . , rn), at step 1 and this is (−1)n(n−1)/2r0 times the discriminant

26



of Q(Y ). Hence the algorithm returns 0 if Q(Y ) has zero discriminant and returns 1
if Q(Y ) has non-zero discriminant. Based on the significance of a polynomial having
non-zero discriminant, this is an algebraic algorithm where DISCn(r0, . . . , rn) returns 1
if Q(Y ) has n distinct roots in an algebraic closure of the field of fractions of R and
otherwise returns 0.

The following two simple algorithms illustrate difficulties which arise in working with
real valued functions and floating point approximation.

2.6.3 POLY-POSITIVE: Here is a very simple algorithm, which is algebraic if
f(Y1, . . . , Yn) is a polynomial in n-variables. R = R.

Initialize: (Y1, . . . , Yn)
step 1: X = f(Y1, . . . , Yn)
step 2: goto step 4 if X > 0
step 3: stop (0)
step 4: stop (1)

Let us call this algorithm E. For r1, . . . , rn ∈ R, E(r1, . . . , rn) outputs 0 or 1 depending
whether f(r1, . . . , rn) is less than or equal to zero or is greater than zero. If floating point
approximation is used in the computation of f(r1, . . . , rn) then the positivity test makes
the output of the algorithm likely to output incorrect results. Nevertheless, branching on
the basis of a test like: X > 0 is quite common, for example this occurs in the Sturm
algorithm and the convex hull algorithm.

2.6.4 REPEAT-ADD: Consider the following algebraic algorithm where R = R.
This algorithm has interesting convergence properties.

Initialize: ()
step 1: X = 0
step 2: X = 1

3
+ X

step 3: goto step 5 if X ≥ 1
step 4: goto step 2
step 5: stop (X)

This essentially represents a while loop, where the loop is repeated “while” X < 1.
When performed with exact arithmetic this algorithm terminates at step 5 with an output
of 1. When performed with a fixed precision decimal floating point approximation this
algorithm terminates at step 5 with an output equal to the floating point approximation to
4
3
. Simply increasing the precision brings the result closer to 4

3
, not closer to 1.

27



2.6.5 BUCHBERGER: Let R represent a field. And let T represent the R algebra
which is the ring of polynomials R[x1, . . . , xn] in n variables over R. Then, the Buchberger
algorithm (see [2]) for calculating Gröbner bases is an algebraic algorithm. S-polynomials
and polynomial reductions may be defined without division. In fact this is typically done
when generalizing the Buchberger algorithm to polynomial rings over integral domains. Or
see [6] where the non-division form of the Buchberger algorithm is utilized to give floating
point approximation methods for the Buchberger algorithm. This is one of the roots of the
present paper. We do not attempt to reduce [6] to a few lines here, but rather just mention
one aspect of the Buchberger algorithm here. Namely, how selecting the leading term of
a polynomial can be accomplished in terms of polynomial functions and predicates. This
discussion presumes some familiarity with the Buchberger algorithm.

Assume that R[x1, . . . , xn] has been assigned a term order and consider a polynomial
f =

∑
α cαxα, where α is a sequence of non-negative integers (α1, . . . , αn) and xα stands

for xα1
1 · · ·xαn

n . Suppose that β is the unique maximal exponent in the term order with
cβ non-zero. Then cβ is the leading coefficient of f and is denoted LC(f). xβ is the
leading power product of f and is denoted LP (f). f may have terms cγx

γ where γ is
greater than β in the term order but cγ = 0. Hence the map sending f to LP (f) is not
structured because it depends on the coefficients of f , not just the structure of f . Now let
(α(1), . . . , α(nf )) be all of the exponents which appear in the expression of f :

∑
α cαxα.

Assume that the polynomial ring is represented by T as in the extended example and all
xα are (copies of elements) in X. Then in the representation of f , all of the αi’s are
distinct. Assume that the sequence of exponents (α(1), . . . , α(nf )) of f is ordered so that
in the term order: α(1) > α(2) > . . . > α(nf ). Let exponents denote the map from T to
S(R; X) which sends f to the ordered, descending sequence (α(1), . . . , α(nf )). exponents
is a polynomial function. In fact exponents only depends on structure and is constant in
terms of coefficients.

Extracting exponents(f) is the first part of finding LC(f) and LP (f). Extracting
specific coefficients is the second. For an exponent β, Mβ denotes the map from T to
S(R; X) which sends f =

∑
α cαxα to cβ if β is among the exponents appearing in f and

zero otherwise. This map is a polynomial function.

The final part of finding LC(f) and LP (f) involves stepping through the sequence
exponents(f). For each α(i) in the sequence one uses the predicate IS ZERO() as in:
IS ZERO(Mα(i)). This controls whether to continue stepping through the sequence or
stop with the critical α(i). If all of the Mα(i)’s are zero, one fully traverses exponents(f)
and f is the zero polynomial. One takes whatever action has been determined for this
case. Alternatively, upon determining the first α(i) with Mα(i) non-zero, then LC(f) =
Mα(i) and LP (f) = xα(i).

We used the term “stepping through” a couple of times. One way of stepping through
a sequence (e1, . . . , en) is to enter a loop which keeps removing the leading element of

28



the sequence.22 While there may be predicates within the loop, there is likely to be an
empty-set test, actually, empty-sequence test to terminate the loop in case all the ele-
ments are exhausted. Such an empty-sequence test is a predicate p(sequence) of the form
IS EMPTY (sequence) and returns TRUE or FALSE depending whether sequence
equals () or not.

3 Approximation

3.1 Posets and Gauges

We must define a notion of approximation in R to discuss stability of CCB algorithms,
(4.3.9). From now on R is (a copy of) a ring. Stability will be with respect to an ordering
in R determined by a poset P with two binary operations: +̂ and ×̂ . As will emerge
later, these operations correspond to the addition and multiplication in R. Negation in
R is handled automatically by the axioms on the map from R to the poset, see (3.1.5,ν1)
below. If R were to have other operations, they would have to be accounted for by other
operations for P or other axioms.

If P is a rooted poset, we denote the root element by 0̂.

Suppose {αn}n is a sequence in P indexed by non-negative integers. αn → 0̂ (n →∞)
means ∀ε ∈ P \ {0̂}, ∃N such that n ≥ N ⇒ αn < ε.23 “αn is bounded” means ∃γ ∈ P
such that αn ≤ γ for sufficiently large n. It follows immediately that αn → 0̂ (n →∞) ⇒
“αn is bounded”.24

In this paper we use P together with sequences to describe convergence and other
topological phenomena. The reliance on sequences rather than nets – another topological
technique – presupposes that P has the following countability property25 : there is a
countable set P0 ⊂ P where ∀ ε ∈ P \ {0̂} ∃ δ ∈ P0 \ {0̂} such that δ < ε. This
condition does not imply that P is countable and is clearly satisfied by all P we introduce
in examples.

Suppose that the two binary operations, +̂ and ×̂ satisfy the following properties,

22Of course, one can do this to a copy so as not to damage the original sequence.
23I.e. an < ε for sufficiently large n.
24Note that the definition of αn → 0̂ (n → ∞) does not require that P is rooted and contains the

element 0̂. We could use the terminology “αn gets arbitrarily small” in this case, but instead we use
the given notation. Hence the reader should not think that the notation αn → 0̂ (n → ∞) implies that
P is rooted and contains the element 0̂. On the other hand if P is not rooted but (3.1.1,P1) through
(3.1.1,P4) below are satisfied, one may enlarge P by adding a root element 0̂ and extend +̂ and ×̂ to
this enlarged set as required by (3.1.1,P0). Hence, we may assume that P (or rather this extension) has
a (root) element 0̂.

25Which corresponds to the first axiom of countability in topology.

29



but are not assumed to satisfy associativity. We give two equivalent forms of the fourth
property, because at times one is more convenient than the other.

3.1.1 DEFINITION Poset with Additional Operations:

(P0) If P is rooted: ∀α ∈ P, 0̂ +̂ α = α +̂ 0̂ = α and 0̂ ×̂α = α ×̂ 0̂ = 0̂

(P1) α ≤ α′ and β ≤ β′ ⇒ α +̂ β ≤ α′ +̂ β′

(P2) α ≤ α′ and β ≤ β′ ⇒ α ×̂ β ≤ α′ ×̂ β′

(P3) αn → 0̂ and βn → 0̂ (n →∞) ⇒ αn +̂ βn → 0̂ (n →∞)

(P4) “αn → 0̂ (n →∞) and βn is bounded” or “βn → 0̂ (n →∞) and αn is bounded” ⇒
αn ×̂ βn → 0̂ (n →∞)

(P4′) αn → 0̂ (n → ∞) ⇒ αn ×̂ β → 0̂ (n → ∞) and βn → 0̂ (n → ∞) ⇒ α ×̂ βn →
0̂ (n →∞)

Examples of P .

3.1.2 EXAMPLE POSREAL: R+, the set of all non-negative real numbers with the
ordinary ≤. 0̂, +̂ and ×̂ are the ordinary 0, + and ×, respectively.

3.1.3 EXAMPLE INTINF: Z∪{∞}, the set of all integers and a symbol infinity
with reverse order ≥ as ≤. 0̂ = ∞, a +̂ b = min(a, b) and a ×̂ b = a + b.

3.1.4 EXAMPLE PRIMEALL: Let P be the set of integer primes and let P be the
set of finite subsets of P. In P use reverse set inclusion ⊇ as ≤. With +̂ = ∩ and
×̂ = ∪ (3.1.1,P1) through (3.1.1,P4) are satisfied. Hence it is possible to adjoin a root
0̂ to P so that (3.1.1,P0) is also satisfied. In this case 0̂ has a natural interpretation as
the subset of P consisting of P itself. (Since P is an infinite set of primes, it is not
already an element of P.) With reverse set inclusion ⊇ as ≤, ∩ as +̂ and ∪ as ×̂ , P
acts as 0̂ in the set P ∪ {P }. Henceforth, when referring to this example we consider P
to be P ∪ {P } and P= 0̂. Now (3.1.1,P0) through (3.1.1,P4) are satisfied.

To define a notion of approximation in R, requires a function somewhat like a norm or
valuation. Rather than call it a pseudo norm or semi-valuation, we call it a gauge. Now
we assume that P is rooted.

30



3.1.5 DEFINITION Gauges: ν : R → P satisfying the following properties is a
gauge.

(ν0) ν(a) = 0̂ iff a = 0

(ν1) ν(−a) = ν(a) for a ∈ R

(ν2) ν(a + b) ≤ ν(a) +̂ ν(b) for a, b ∈ R

(ν3) ν(ab) ≤ ν(a) ×̂ ν(b) for a, b ∈ R

Let us look at some examples. The examples which follow build upon earlier examples
of P .

Examples of ν.
For the first example, P is R+, as in the example POSREAL (3.1.2).

3.1.6 EXAMPLE ABSOLUTE VALUE: Let R = R. For a ∈ R let,

ν(a) = |a| the absolute value of a

This is an Archimedean gauge, in the sense of Archimedian valuation.

For the next two examples, P is Z∪{∞}, as described in the example INTINF (3.1.3).

3.1.7 EXAMPLE p-VAL: Let R = Z. Fix a prime p. Let ν(0) = ∞ and for
0 6= a ∈ Z,

ν(a) = ap where a = ±∏
q qaq , the factorization of a

3.1.8 EXAMPLE p-ADICS: Let R = Qp, the field of p-adic numbers. Let ν(0) = ∞
and for 0 6= α ∈ Qp,

ν(α) = t where α =
∑∞

n=t anp
n with at 6= 0 and 0 ≤ an < p

∑∞
n=t anp

n is the p-adic expansion of α. This is non-Archimedean in the sense of a p-adic
valuation, being non-Archimedean.

For the last example, P is P∪{P }, as described in the example PRIMEALL (3.1.4).

3.1.9 EXAMPLE PRIMEDIVISORS: Let R = Z. Let ν(0) = 0̂ and for 0 6=
n ∈Z,

ν(n) = {p ∈ P | p|n} for n ∈ Z,

As usual, p|n indicates that p divides n. Notice that ν(1) is the empty set.

31



Now let us utilize ν to define approximation for R.

3.1.10 DEFINITION Approximation Pairs and Convergent Approximation:
A pair of maps (ρ : R → R, α : R → P ) is an approximation pair for R if Approx0

holds. We also may say that ρ is an approximation with precision α or that α is an error
bound for ρ. A sequence of pairs of maps: {(ρk : R → R, αk : R → P )}k is a convergent
approximation for R if Approx1 and Approx2 hold. If in addition, Approx1 holds
for all k in the sequence, then {(ρk : R → R, αk : R → P )}k is a strict convergent
approximation for R.

(Approx0) ν(a− ρ(a)) ≤ α(a) for all a ∈ R.

(Approx1) ∃M such that k ≥ M ⇒ αk is an error bound for ρk. In other words,
(ρk : R → R,αk : R → P ) is an approximation pair for sufficiently large k.

(Approx2) For each a ∈ R, αk(a) → 0̂ as k →∞

A convergent approximation is called strict if (ρk, αk) is an approximation pair for R
for all k. A convergent approximation is bounded in the sense that

3.1.11 ∀a ∈ R, ∃γa ∈ P such that ν(ρk(a)) ≤ γa for sufficiently large k

γa can be chosen as ε +̂ ν(a), ∀ε ∈ P \ {0̂}. With M as in (3.1.10,Approx1) and k ≥ M :

ν(ρk(a)) = ν((ρk(a)− a) + a) ≤ ν(ρk(a)− a) +̂ ν(a) ≤ αk(a) +̂ ν(a)

by (3.1.5,ν2) and (3.1.1,P1). Now apply (3.1.10,Approx2) and (3.1.5,ν2).

The first example we present of a convergent approximation may appear trivial but
plays a significant role in stabilizing algorithms.

3.1.12 EXAMPLE The Identity Convergent Approximation Linked to a Con-
vergent Sequence in P : Suppose that {pk}k is a sequence of elements of P which
converges to 0̂. For each k let ρk be the identity map from R to itself.26 Let αk : R → P
be the constant function sending each element of R to pk. Then it is immediate that the
sequence of pairs of maps {(ρk, αk)}k is a convergent approximation for R. It may be
called the identity convergent approximation arising from {pk}k.

Now some examples which build upon previous examples.

Examples of Convergent Approximations.
The first two examples continue the example ABSOLUTE VALUE, (3.1.6).

26Meaning that for r ∈ R, ρk(r) = r and not ρk(r) = 1, unless of course r = 1.

32



3.1.13 EXAMPLE FLOATING POINT APPROXIMATION: So-called round-
off to k digits gives a floating point representation of each element of R with base 10, where
αk is a rounding error upper bound. For example,

ρk(4/9) = .

k digits︷ ︸︸ ︷
444 · · · 4 and ρk(5/9) = .

k digits︷ ︸︸ ︷
555 · · · 6

Here we can set
αk(a) = 5× 10−(k+1)

3.1.14 EXAMPLE CONTINUED FRACTION (or DIOPHANTINE) AP-
PROXIMATION: For an irrational number ω ∈ R, let pk

qk
∈ Q ((pk, qk) = 1, qk > 0)

be the result from the kth truncation of the simple continued fraction expansion of ω, where

∣∣∣∣∣ω −
pk

qk

∣∣∣∣∣ <
1

qk
2

We then define ρk : R→ Q by

ρk(ω) =

{
pk

qk
if ω 6∈ Q

ω if ω ∈ Q

and define αk by

αk(ω) =

{
1
q2
k

if ω 6∈ Q

0 if ω ∈ Q

We refer the reader to [4] for the theory of continued fractions.

The next example continues with the previous example p-ADICS (3.1.8).

3.1.15 EXAMPLE TRUNCATION in p-ADIC EXPANSION: Let α ∈ Qp be
represented by

∑∞
n=t anp

n (at 6= 0). ρk is a truncation at the (k + 1)st term, that is,

ρk(α) =
t+k−1∑

n=t

anp
n,

where
αk(α) = t + k

See [4] also for the theory of p-adic numbers.

The last two examples continue with the example PRIMEDIVISORS (3.1.9).

33



3.1.16 EXAMPLE TRUNCATION in FACTORIZATION: Let p1 = 2, p2 = 3,
p3 = 5, p4 = 7, p5 = 11, . . . so that pi be the ith prime. Define ρk(0) = 0 and ρk(1) = 1.
Also define αk(0) = αk(1) =P. Recall that P is the 0̂ in this P . For n ∈ Z, suppose that
n is factorized as ±pn1

1 pn2
2 · · · pnt

t (ni ≥ 0 for i ∈ [1, t− 1] and nt ≥ 1). Then

ρk(n) =

{
±pn1

1 pn2
2 · · · pnk

k if k ≤ t
±pn1

1 pn2
2 · · · pnt

t = n if k > t

Set Pk = {p1, p2, . . . , pk} and define

αk(n) = {p ∈ Pk | p|(n− ρk(n))}

3.1.17 EXAMPLE MODULAR REMAINDER: Remainder of integers modulo
a prime may also be considered to be an approximation in our framework. For n ∈ Z,
ρk : Z→ Z is defined by

ρk(n) = n̄ where 0 ≤ |n̄| < pk, n and n̄ have the same sign and n ≡ n̄ (mod pk)

αk(n) = {p ∈ Pk | p|(n− ρk(n))}

Approx2 in (3.1.10) is suitable for most purposes but does not rule out some anoma-
lous behavior. For example, there are pathological examples of convergent approximations
where {ak}k is a sequence of elements of R which converges to a ∈ R but the sequence
{ρk(ak)}k converges to an element of R different from a, or where the sequence {ρk(ak)}k

does not converge at all. When such pathologies must be ruled out, one must replace
Approx2 with a more restrictive condition. Here are two reasonable choices to replace
Approx2, listed in order of increasing stringency:

3.1.18 (Approx2′) If {ak}k is a Cauchy sequence27 of elements of R then αk(ak) → 0̂
as k →∞.

3.1.19 (Approx2′′) If {ak}k is a bounded sequence of elements of R then αk(ak) → 0̂
as k →∞.

3.1.20 DEFINITION Continuous and Locally Compact Convergent Approx-
imation: A sequence of pairs of maps: {(ρk : R → R,αk : R → P )}k, is a continu-
ous convergent approximation if it satisfies Approx1 and Approx2′. The sequence of
pairs of maps is a locally compact convergent approximation if it satisfies Approx1 and
Approx2′′.

27Cauchy sequences and convergent sequences of elements of R are about to be defined.

34



Note that the examples FLOATING POINT APPROXIMATION (3.1.13), and
TRUNCATION in p-ADIC EXPANSION (3.1.15) satisfy (3.1.19) because αk(a)
does not depend upon a and hence are locally compact convergent approximations.

As will be seen, the notion of convergent approximation is related to pointwise con-
vergence of functions. The notion of locally compact convergent approximation is related
to convergence of functions which is locally compactly uniform; i.e. uniform on compact
neighborhoods of a point. The notion of continuous convergent approximation is related
to continuous convergence of functions as defined and treated in [3].

3.2 Convergence

Gauges, like norms and valuations, support the definition of convergence. Here is the
notion of convergence for R, Rn and S(R; X). Suppose that R has a gauge ν and {ak}k

is a sequence of elements of R:

3.2.1 DEFINITION Convergence for R: We write ak → a (k → ∞) to signify
that ν(ak − a) → 0̂ (k →∞) in P .

{ak}k is a Cauchy sequence if for ∀ ε ∈ P \{0̂}, ∃N such that k, n ≥ N ⇒ ν(ak−an) <
ε. Convergent sequences are Cauchy sequences28. Whether Cauchy sequences must be
converge depends upon R being complete as a topological space. For example, the real
numbers are complete but the rational numbers are not.

At (3.1.20) and (4.2.6) we present Approx2′ and Approx2′′ which are increasingly re-
strictive alternative hypotheses to Approx2. Similarly, at (4.2.1) and (5.4.1) we present
Convergence′ and Convergence2′′ which are increasingly restrictive alternative hy-
potheses to Convergence. For all of these, the fact that hypothesis′ is more restrictive
than the original hypothesis follows from the fact that a constant sequence, i.e. {ak}k

where all the ak
′s are equal, is Cauchy. Also, for all of these, the fact that hypothesis′′ is

more restrictive than hypothesis′ follows from the fact that if {ak}k is a Cauchy sequence
then it is bounded29.

For Rn, let a ∈ Rn stand for an n–tuple (a1, . . . , an) with the ai’s in R. Similarly having
a sequence {ak}k of elements of Rn is equivalent to having n sequences {a1,k}k, . . . , {an,k}k

of elements of R where each ak is the n–tuple (a1,k, . . . , an,k). We use similar underline

28If ak → a (k →∞) then ν(ak − a) → 0̂ (k →∞). Hence, ν(ak − a) + ν(ak − a) → 0̂ (k →∞). Hence
for ε ∈ P \ {0̂}, ∃N such that k ≥ N ⇒ ν(ak − a) + ν(ak − a) < ε. If ak = a for k ≥ N then {ak}k is
Cauchy. Otherwise there is M ≥ N with aM 6= a and so ν(aM − a) 6= 0̂. Now there is L ≥ M where
k ≥ L ⇒ ν(ak − a) < ν(aM − a). From here it is easy to show that k, n ≥ L ⇒ ν(ak − an) < ε and the
sequence is Cauchy.

29This is not very difficult to see and is left to the reader.

35



notation for P n. 0̂ of course denotes (0̂, . . . , 0̂) ∈ P n. For a ∈ Rn let ν(a) ∈ P n denote the
n–tuple (ν(a1), . . . , ν(an)). For α, β ∈ P n: α < β signifies that αi < βi for i = 1, . . . , n.
Similarly for “≤”, “≥” and “>”. A sequence {αk}k of elements of P n is said to be bounded
if for j = 1, . . . , n each of the component sequences {αj,k}k is bounded, as defined at the
beginning of Section (3.1). A sequence {ak}k of elements of Rn is bounded iff the sequence
{ν(a)

k
}k is bounded.

3.2.2 DEFINITION Convergence for P n: Suppose that {εk}k is a sequence of
elements of P n. εk → 0̂ (k →∞) signifies that εi,k → 0̂ (k →∞) for i = 1, . . . , n.

3.2.3 DEFINITION Convergence for Rn: Suppose that {ak}k is a sequence of
elements of Rn and a ∈ Rn. ak → a (k →∞) signifies that ν(ak − a) → 0̂ (k →∞).

In the preceding, ak−a is the n–tuple (a1,k−a1, . . . , an,k−an). It is easily verified that
ak → a (k → ∞) is equivalent to ai,k → ai (k → ∞) for i = 1, . . . , n. In other words, a
sequence of elements of Rn converges to a if and only if it converges to a componentwise.

Just as for R, a convergent sequence in Rn is Cauchy. In Rn Cauchy may be defined
as “component-wise” Cauchy.

3.2.4 DEFINITION Convergence for S(R; X): Let {dk}k be a sequence of el-
ements of S(R; X) and let d be an element in S(R; X). dk → d (k → ∞) signifies that
there exists N such that
(1) k ≥ N ⇒ ∗dk = ∗d, and
(2) for {κ(dk)}k≥N , κ(dk) → κ(d) (k →∞).

Note that κ(dk) ∈ R]dk and κ(d) ∈ R]d. For k ≥ N : ]dk = ]d since ∗dk = ∗d. Hence
the convergence required in (2) is simply (componentwise) convergence in Rn, just defined.

3.3 Stability

Approximation in R easily extends to S(R; X). The underlying idea is to simply approxi-
mate elements of S(R; X) on a coefficientwise basis. If d ∈ S(R; X), then ρk(d) is obtained
by replacing each coefficient a in d by ρk(a). More specifically, if κd = (a1, . . . , an) ∈ Rn

then ρk(d) is defined to be: 〈∗d, (ρk(a1), . . . , ρk(an))〉.

3.3.1 DEFINITION Stability of Algorithms: Suppose I ∈ S(R; X) is an input
for an algorithm A and that A terminates normally on I.30 We call A stable at I if for

30In general, invoking A on input data which approximates I will not approximate the output: A(I).

36



every sequence {Ik}k in S(R; X) which converges to I there is an M such that k ≥ M ⇒A
with input data Ik terminates normally and the sequence of outputs: {A(Ik)}k≥M converges
to A(I). Otherwise A is said to be unstable at I.

The term “stable” has different meanings in different areas such as differential equa-
tions, economic models, and linear multistep iterations. With the qualifier “numerically”,
it has a stronger meaning than ours in numerical analysis. We refer the reader to [7] for
the details on numerical stability. Let us look at the algebraic algorithms we gave above
from the viewpoint of stability.

Examples of Stability.
All the examples below build on the previous example FLOATING POINT APPROX-
IMATION (3.1.13) ρk is the rounding to k digits and αk is the rounding error upper
bound.

3.3.2 DETERMINANT: The algorithm presented at (2.6.1) is stable because it is
simply polynomial evaluation and polynomials are continuous.

3.3.3 DISCRIMINANT: The algorithm presented at (2.6.2) is unstable and any
such algorithm must be unstable. Recall that DISCn(r0, . . . , rn) returns 1 if Q(Y ) has n
distinct roots in an algebraic closure of the field of fractions of R and otherwise returns 0.
Consider Q(Y ) = Y 2 + 0 as a polynomial with the one coefficient: 0. The correct answer
is 0 since Q(Y ) has 0 as a multiple root. However, vary the coefficient 0 slightly and the
resulting Q(Y ) has distinct roots. Hence, with any approximation to the coefficient 0 -
other than 0 itself - the algorithm returns 1.

3.3.4 POLY-POSITIVE: The algorithm presented at (2.6.3) is unstable, consider
the case f(Y1, . . . , Yn) is simply the linear polynomial in one variable Y1 and the input is
0. Later we shall consider the situation where not only are input coefficients converted to
floating point numbers, but also floating point arithmetic is used for the actual computation
during the course of the algorithm. We will discuss a general framework for such a total
conversion to floating point in Section 5.4.

3.3.5 REPEAT-ADD: The algorithm presented at (2.6.4) is unstable, see the discus-
sion following the presentation of the algorithm.

3.3.6 BUCHBERGER: The algorithm presented at (2.6.5) is fundamentally unsta-
ble. In the univariate case, computing a Gröbner basis from the input polynomials com-
putes a Greatest Common Divisor (GCD) of the input polynomials. This is true no-matter
what specific method of computing a Gröbner basis is used. Since the GCD depends un-
stably on the input polynomials, Gröbner basis algorithms cannot be stable.

37



The aim of this paper is to stabilize unstable CCB algorithms (4.3.9). I.e., given an
unstable CCB algorithmA, the aim is to utilizeA to devise a family of other algorithmsAi,
so that for inputs I, Ai(I) → A(I). Moreover if {Ij}j is a sequence of inputs converging
to I then:

limi(limjAi(Ij)) = A(I)

The precise details appear later, (5.1.7). Of course the algorithms Ak should be closely
related to A. The method we present automatically derives Ak from A and knowledge of
a certain discontinuity set of A when A is not too ill-behaved.

4 Bracket Coefficients

4.1 Basic Bracket Coefficient Considerations

Now fix R, X, S(R; X), P , ν, {ρk}, and {αk}. A bracket coefficient or simply BC
is [a, α] where a ∈ R and α ∈ P . Let BC[R,P ], be the set of bracket coefficients,
{[a, α] | a ∈ R, α ∈ P}. As a set BC[R, P ] is in one to one correspondence with the
Cartesian product: R × P . BC[R, P ] is frequently abbreviate as BC. If b ∈ BC we use
bR to denote the R component of b and bP to denote the P component of b. So bR ∈ R,
bP ∈ P and b = [bR, bP ].

Arithmetic in BC is defined as follows:

4.1.1 DEFINITION BC-Arithmetic:

Addition [a, α] + [b, β] = [a + b, α +̂ β]

Subtraction [a, α]− [b, β] = [a− b, α +̂ β]

Multiplication [a, α]× [b, β] = [ab, (ν(a) ×̂ β) +̂ (α ×̂ β) +̂ (α ×̂ ν(b))]

where w +̂ x +̂ y +̂ · · · +̂ z denotes (· · · ((w +̂ x) +̂ y) +̂ · · ·) +̂ z.

Elements of BC[Rm, Pm] are of the form [e, ε] with e ∈ Rm and ε ∈ Pm.

We must frequently correspond BC[R, P ]m with BC[Rm, Pm] or Rm×Pm. Typically we
correspond ([a1, α1], . . . , [am, αm]) with [(a1, . . . , am), (α1, . . . , αm)]. Going from BC[R, P ]m

is done by extending the ()R and ()P notation, as follows:

4.1.2 ([a1, α1], . . . , [am, αm])R ≡ (a1, . . . , am)

38



([a1, α1], . . . , [am, αm])P ≡ (α1, . . . , αm)

()R and ()P are destructors. The constructor to build elements of BC[R,P ]m from BC[Rm, Pm]

or Rm×Pm is “
⇀

[ ,
↼

] ” and is defined:

4.1.3
⇀

[ (a1, . . . , am), (α1, . . . , αm)
↼

]≡ ([a1, α1], . . . , [am, αm])

With this notation, for a ∈ Rm, α ∈ Pm and w ∈ BC[R, P ]m:

4.1.4 w =
⇀

[ wR, wP

↼

]

a =
⇀

[ a, α
↼

] R

α =
⇀

[ a, α
↼

] P

Lastly, for a subset A ⊆ Rm and subset Q ⊆ Pm we define
⇀

[ A,Q
↼

] by:

4.1.5
⇀

[ A,Q
↼

]≡ {w ∈ BC[Rm, Pm]|w =
⇀

[ a, q
↼

] for a ∈ A, q ∈ Q}

Most typically Q will be all of Pm.

4.2 Convergent Bounds

BC-Arithmetic combines the addition, subtraction, and multiplication operations of R
with the corresponding operations of P in such a way that error is controlled in the sense
that Lemmas (4.2.9) and (4.2.10) hold. What property of “+”,“−”, “×” allows them to
usefully extend to bracket coefficients? The answer is the convergent bounds defined below.
Many functions, such as polynomials, have convergent bounds. This will appear in the
following section where it will also be shown that the class of functions with convergent
bounds has the C4 property, (2.4.6). Eventually we shall also see that having convergent
bounds is the necessary requirement on functions appearing in algorithms for our stability
methods to apply.

To realize the full implication of convergent bounds we must consider maps from Rm to
Rn for various m’s and n’s and define what it means for them to have convergent bounds.
In the case of polynomial functions from Rm to Rn, a function is considered polynomial if
its coordinate functions are polynomial. In the case of convergent bounds we may remain

39



multidimensional.31 In keeping with primarily considering Rm and Rn multidimensionally
rather than primarily in terms of products of copies of R or sequences of elements of R,
we now usually omit underlining.32 So, for example, we write a ∈ Rm not a ∈ Rm. If

a ∈ Rm we write ν(a) ∈ Pm not ν(a) ∈ Pm. We write 0̂ for 0̂ ∈ Pm.

One way of thinking about convergent bounds is that they are a certificate of conti-
nuity. See (4.6.4).

As in (3.1.20) and (4.2.6) where Approx2′ and Approx2′′ are increasingly restrictive
alternatives to Approx2, we introduce Convergence′ and Convergence′′ as increas-
ingly restrictive alternatives to Convergence in:

4.2.1 DEFINITION Convergent Bounds: Let A ⊆ Rm, C ⊆ Rn and op : A → C.

Let ω :
⇀

[ A,Pm
↼

]→ P n. ω is a convergent bound for op if Bound and Convergence
hold. ω is a continuous convergent bound for op if Bound and Convergence′ hold.
ω is a locally compact convergent bound for op if Bound and Convergence′′ hold.

Bound: For a, a′ ∈ A and ε ∈ Pm: if ν(a− a′) ≤ ε then ν(op(a)− op(a′)) ≤ ω(
⇀

[ a, ε
↼

] ).

Convergence: For sequences {εk}k of elements of Pm where εk → 0̂ (k → ∞) and

elements a of A, the sequence {ω(
⇀

[ a, εk

↼

] )}k has the convergence

ω(
⇀

[ a, εk

↼

] ) → 0̂ (k →∞)

Convergence′: ω has the following restricted form of convergence: For sequences {εk}k

of elements of Pm where εk → 0̂ (k → ∞) and Cauchy sequences {ak}k of

elements of A: the sequence {ω(
⇀

[ ak, εk

↼

] )}k has the convergence

ω(
⇀

[ ak, εk

↼

] ) → 0̂ (k →∞)

Convergence′′: ω has the following restricted form of convergence: For sequences {εk}k

of elements of Pm where εk → 0̂ (k → ∞) and bounded sequences {ak}k of

elements of A: the sequence {ω(
⇀

[ ak, εk

↼

] )}k has the convergence

ω(
⇀

[ ak, εk

↼

] ) → 0̂ (k →∞)

31This is a lie for two reasons. The first is that convergence in Rpower and P power is really a compo-
nentwise issue. The second is that the definition we give of op : Rm → Rn having a convergent bound is
equivalent to the individual coordinate functions having a convergent bound. Nevertheless, the viewpoint
is honestly multidimensional instead of iterated unidimensional.

32It is handy to use underlining when it is necessary to use a vector and its components. With
underlining, ‘ai’s are automatically the component entries of a.

40



Let us use op+, op− and op× as the functional notation for the infix operations
“+”,“−”, “×”.33 It is easy to check that if we define ω±([r1, ε1], [r2, ε2]) as ε1 +̂ ε2 then ω±
is a locally compact convergent bound for both op+ and op−. The “unary” operator “−”,
meaning negation, may be expressed in terms of the binary “−” by subtracting elements
from 0. However it is easy to directly check that defining ωunary−([r, ε]) = ε yields a locally
compact convergent bound for unary “−”.

A locally compact convergent bound for op× is a bit more delicate. Define
ω×([r1, ε1], [r2, ε2]) as (ν(r1) ×̂ ε2) +̂ (ε1 ×̂ ε2) +̂ (ε1 ×̂ ν(r2)). Convergence′′ easily follows
from (3.1.1,P0) – (3.1.1,P4).34 The bound property uses the tricky equation: (r1 ×
r2)− (s1× s2) = r1× (r2− s2)− (r1− s1)× (r2− s2) + (r1− s1)× r2, where the left hand
side is op×(r1, r2) − op×(s1, s2). Apply ν to both sides and use (3.1.5,ν1) – (3.1.5,ν3)
together with ν(r1 − s1) ≤ ε1 and ν(r2 − s2) ≤ ε2 to obtain: ν(op×(r1, r2) − op×(s1, s2))
≤ (ν(r1) ×̂ ε2) +̂ (ε1 ×̂ ε2) +̂ (ε1 ×̂ ν(r2)). Note that the right hand side is precisely
ω×([r1, ε1], [r2, ε2]).

Here are four more operations and their locally compact convergent bounds. Say q ∈ R
and define the four operators:

opq+ : R → R, r → q + r

op+q : R → R, r → r + q

opq× : R → R, r → q × r

op×q : R → R, r → r × q

Of course opq+ = op+q, because addition is commutative. opq× = op×q if and only if q lies
in the center of R. It is easy and left to the reader to check that the following ω’s give
respective locally compact convergent bounds:

ωq+ : BC → P, [r, ε] → ε

ω+q : BC → P, [r, ε] → ε

ωq× : BC → P, [r, ε] → ν(q) ×̂ ε

ω×q : BC → P, [r, ε] → ε ×̂ ν(q)

If R has additional operations with convergent bounds they extend to BC as follows:

4.2.2 DEFINITION BC Extension of Functions with Convergent Bounds:

Let A ⊆ Rm, C ⊆ Rn and op : A → C. Suppose that ω :
⇀

[ A,Pm
↼

]→ P n is a convergent

33I.e. op+(a, b) = a + b, etc.
34The (3.1.1,P4′) version of (3.1.1,P4) is handy here.

41



bound for op. The extension of the pair (op, ω) to a map
⇀

[ A,Pm
↼

]→
⇀

[ C, P n
↼

] is

denoted opω and for t ∈
⇀

[ A,Pm
↼

] is defined:

opω(t) ≡
⇀

[ op(tR), ω(t)
↼

]

Or equivalently, if t =
⇀

[ a, p
↼

] then opω(t) =
⇀

[ op(a), ω(
⇀

[ a, p
↼

] )
↼

] .

The reader should check that the above extension of the pairs (op+, ω±), (op−, ω±)
and (op×, ω×) coincides with the BC-arithmetic previously defined.

The notion of bracket coefficients together with convergent bounds might be considered
a kind of algebraicization of interval as in interval analysis. From this viewpoint, BC-
arithmetic is analogous to interval arithmetic, see [1] for details on interval analysis.

In order to quantify error control we must use approximation pairs and convergent
approximations in Rpower . All the preceding examples of approximation pairs and con-
vergent approximations in R give approximation pairs and convergent approximations in
Rpower , as will be explained. The following generalizes (3.1.10).

4.2.3 DEFINITION Multidimensional Approximation Pairs and Conver-
gent Approximation: Suppose that A ⊆ Rm, ρ : A → A and α : A → Pm. (ρ, α)
is an approximation pair for A if Approx0 holds. We also may say that ρ is an
approximation with precision α or that α is an error bound for ρ. A sequence of pairs
of maps: {(ρk : A → A,αk : A → Pm)}k is a convergent approximation for A if
Approx1 and Approx2 hold.

(Approx0) ν(a− ρ(a)) ≤ α(a) for all a ∈ A.

(Approx1) ∃M such that k ≥ M ⇒ αk is an error bound for ρk. In other words,
(ρk : A → A,αk : A → Pm) is an approximation pair for A for sufficiently large k.

(Approx2) For each a ∈ A, αk(a) → 0̂ as k →∞

It follows that if {(ρk, αk)}k is a convergent approximation for A then for each a ∈ A,
ρk(a) → a (k → ∞). By definition of convergence in Rm it follows that componentwise:
ρk(a) → a (k →∞). Hence, by the reasoning following (3.1.10), componentwise {ρk(a)}k

is bounded. By the definition of “bounded in Rm” it follows that {ρk(a)}k is bounded.

As mentioned above (3.1.18), Approx2 of (3.1.10) must sometimes be replaced by a
stronger condition. This will occur in the consideration of utilizing approximate computa-
tion in place of exact computation in Section (5.4). In this case, Approx2 of (4.2.3) must
sometimes be replaced by a similar stronger condition. As before, here are two reasonable
choices to replace Approx2, listed in order of increasing stringency:

42



4.2.4 (Approx2′) If {ak}k is a Cauchy sequence of elements of A then αk(ak) → 0̂ as
k →∞.

4.2.5 (Approx2′′) If {ak}k is a bounded sequence of elements of A then αk(ak) → 0̂ as
k →∞.

Parallel to (3.1.20) define:

4.2.6 DEFINITION Multidimensional Continuous and Locally Compact Con-
vergent Approximation: A sequence of pairs of maps: {(ρk : A → A,αk : A →
Pm)}k, is a Continuous convergent approximation if it satisfies Approx1 and Approx2′.
The sequence of pairs of maps is a locally compact convergent approximation if it satisfies
Approx1 and Approx2′′.

Typically, multidimensional approximation pairs and multidimensional convergent ap-
proximations arise from one dimensional approximation pairs and one dimensional conver-
gent approximations. This is done by a diagonalization process we now describe. When
these diagonal extension techniques are applied to continuous or locally compact conver-
gent approximations they yield continuous or locally compact multidimensional convergent
approximations.

4.2.7 EXAMPLE Diagonal Extension of One Dimensional Approximation
Pairs to Multidimensional Approximation Pairs: This is a long title for a short
process. Suppose that (ρ : R → R, α : R → P ) is an approximation pair for R,
(3.1.10,Approx0), and m is a positive integer. Let ρm denote the map Rm → Rm,
(r1, . . . , rm) → (ρ(r1), . . . , ρ(rm)). Let αm denote the map Rm → Pm, (r1, . . . , rm) →
(α(r1), . . . , α(rm)). Then it is easy to check – and left to the reader – that (ρm : Rm →
Rm, αm : Rm → Pm) is an approximation pair for Rm. It is the diagonal extension of the
original (ρ, α) pair to Rm and Pm.

The example can be jazzed up. Instead of using the same (ρ, α) in each coordinate,
one could use distinct (ρ, α)’s, as long as they are all approximation pairs. Similar to
the diagonal extension of approximation pairs we have a diagonal extension of convergent
approximations. And like the previous example, this one can also be jazzed up by using
distinct convergent approximations in each coordinate.

4.2.8 EXAMPLE Diagonal Extension of One Dimensional Convergent Ap-
proximations to Multidimensional Convergent Approximations: Another long
title for a short process. Suppose that {(ρk : R → R, αk : R → P )}k is a convergent
approximation for R, (3.1.10), and m is a positive integer. Let ρk

m denote the map

43



Rm → Rm, and αk
m denote the map Rm → Pm, both defined as in the previous example.

Then it is easy to check – and left to the reader – that {(ρk
m : Rm → Rm, αk

m : Rm →
Pm)}k is a convergent approximation for Rm. It is the diagonal extension of the
original convergent approximation to Rm and Pm. The extension is a strict convergent
approximation if and only if the original convergent approximation is strict.

The next two lemmas describe error control.

4.2.9 LEMMA Error Propagation: Let A ⊆ Rm, C ⊆ Rn and op : A → C. Let

ω :
⇀

[ A,Pm
↼

]→ P n be a convergent bound for op. Let ρ : A → A and α : A → Pm be
an approximation pair for A. Then for a ∈ A:

ν(op(a)− op(ρ(a))) ≤ ω(
⇀

[ a, α(a)
↼

] )

and

ν(op(a)− op(ρ(a))) ≤ ω(
⇀

[ ρ(a), α(a)
↼

] )

PROOF: By (4.2.3,Approx0): ν(a − ρ(a)) ≤ α(a). Now substitute ρ(a) for a′ and
α(a) for ε in (4.2.1,Bound) and the first equation follows. By (3.1.5,ν1) ν(a − ρ(a)) =
ν(ρ(a)− a) so that ν(ρ(a)− a) ≤ α(a). Now substitute ρ(a) for a, a for a′ and α(a) for ε
in (4.2.1,Bound) and the second equation follows after once again using (3.1.5,ν1).

4.2.10 LEMMA Error Convergence: Let A ⊆ Rm, C ⊆ Rn and op : A → C. Let

ω :
⇀

[ A,Pm
↼

]→ P n be a convergent bound for op. Let {(ρk : A → A,αk : A → Pm)}k

be a convergent approximation for A. Then:

ω(
⇀

[ a, αk(a)
↼

] ) → 0̂ (k →∞)

and if ω is a continuous convergent bound:

ω(
⇀

[ ρk(a), αk(a)
↼

] ) → 0̂ (k →∞)

PROOF: αk(a) → 0̂ (k → ∞) and ρk(a) → a (k → ∞) because {(ρk : A → A,αk :
A → Pm)}k is a convergent approximation for A. Hence the first equation holds by
(4.2.1,Convergence). Since {ρk(a)}k is a convergent sequence, it is a Cauchy sequence.
Hence the second equation holds by (4.2.1,Convergence′).

The next theorem identifies when an element of C is op(a) for a ∈ A and identifies
when op(a) lies in a specified subset of C. It is a particularly useful formulation.

44



4.2.11 THEOREM: Let A ⊆ Rm, C ⊆ Rn and op : A → C. Let ω :
⇀

[ A,Pm
↼

]→ P n

be a continuous convergent bound for op. Let {(ρk : A → A, αk : A → Pm)}k be a
convergent approximation for A.

a. For c ∈ C, c = op(a) for a ∈ A iff ∃M s.t. k ≥ M ⇒

ν(c− op(ρk(a))) ≤ ω(
⇀

[ ρk(a), αk(a)
↼

] )

If the convergent approximation {ρk}, {αk} is a strict convergent approximation, the above
formula holds for all k.

b. For a subset S of C, op(a) ∈ S iff ∃s ∈ S and M such that k ≥ M ⇒

ν(s− op(ρk(a))) ≤ ω(
⇀

[ ρk(a), αk(a)
↼

] )

If the convergent approximation {ρk}, {αk} is a strict convergent approximation, the above
formula holds for all k.

PROOF: a. (⇒) follows from Lemma (4.2.9) if M is chosen so that (ρk, αk) is an
approximation pair for k ≥ M .

(⇐) For all k, ν(c − op(a)) ≤ ν(c − op(ρk(a))) +̂ ν(op(ρk(a)) − op(a)) by (3.1.5,ν2).

By hypothesis ν(c − op(ρk(a)) ≤ ω(
⇀

[ ρk(a), αk(a)
↼

] ) for sufficiently large k and by

(4.2.10), ω(
⇀

[ ρk(a), αk(a)
↼

] ) → 0̂ (k → ∞). Hence, ν(c − op(ρk(a)) → 0̂ (k → ∞). Of
course, ν(op(ρk(a)) − op(a)) = ν(op(a) − op(ρk(a))) and by (4.2.9), ν(op(a) − op(ρk(a)))

≤ ω(
⇀

[ a, αk(a)
↼

] ). By (4.2.10), ω(
⇀

[ a, αk(a)
↼

] ) → 0̂ (k → ∞). Now we have that
ν(c − op(a)) is bounded by the sum of elements from two sequences which go to 0̂. By
(3.1.1,P3) it follows that the sum goes to 0̂ and so ν(c−op(a)) must equal 0. By (3.1.5,ν0)
it follows that c = op(a).

b. This follows immediately from a..

4.3 Technical Results about Convergent Bounds

Like section (2.4), we recommend skipping this section until the results are called upon.

We have said that many functions, such as polynomial functions, have convergent
bounds and that functions with convergent bounds form a C4 class. We prove this in this
section. The key is (4.3.3) which is the convergent bound version of (2.4.5) and (2.4.6).
But first a needed technical lemma.

45



4.3.1 LEMMA Preservation of Boundedness: Let A ⊆ Rm, C ⊆ Rn, and let

op : A → C have a convergent bound ω :
⇀

[ A,Pm
↼

]→ P n. If {ak}k is a bounded
sequence of elements of A then {op(ak)}k is a bounded sequence of elements of C.
In other words, functions with convergent bounds carry bounded sequences to bounded
sequences.

PROOF: Since {ak}k is a bounded sequence, there is q ∈ Pm and an integer M where
ν(ak) ≤ q for k ≥ M . Let us apply the bound condition using any element a ∈ A, ak for
a′ and q for ε. This gives:

ν(op(ak)− op(a)) = ν(op(a)− op(ak)) ≤ ω(
⇀

[ a, q
↼

] )

Hence ν(op(ak)) ≤ ν(op(ak) − op(a)) + ν(op(a)) ≤ ω(
⇀

[ a, q
↼

] ) +̂ ν(op(a)). Thus
{op(ak)}k is a bounded sequence of elements of C.

4.3.2 LEMMA Preservation of Cauchy: Let A ⊆ Rm, C ⊆ Rn, and let op :

A → C have a continuous convergent bound ω :
⇀

[ A,Pm
↼

]→ P n. If {ak}k is a Cauchy
sequence of elements of A then {op(ak)}k is a Cauchy sequence of elements of C.
In other words, functions with continuous convergent bounds carry Cauchy sequences to
Cauchy sequences.

PROOF: Suppose that {ak}k is a Cauchy sequence. Let {εk}k be a sequence of elements
of P \ {0̂} which converges to 0̂. Since {ak}k is a Cauchy sequence, for each εi there is an
integer Mi where: ν(aj − ak) ≤ εi for j, k > Mi. Hence by the bound condition:

ν(op(aj)− op(ak)) ≤ ω(
⇀

[ aj, εj

↼

] ) for j, k > Mi

By Convergence′, the sequence {ω(
⇀

[ aj, εj

↼

] )}j converges to 0̂.

The following shows that functions with convergent bounds are a C4 class of functions.
However, it does more. Namely, it shows how to construct a convergent bound for the
function which is claimed to have a convergent bound.

4.3.3 PROPOSITION: Suppose that A ⊆ Rm, C ⊆ Rn, B ⊆ Rm′
, D ⊆ Rn′ and

f : A → C, g : B → D. In the following convergent bound may uniformly be replaced by

continuous convergent bound or locally compact convergent bound. Let ω :
⇀

[ A,Pm
↼

]→ P n

be a convergent bound for f and ξ :
⇀

[ B, Pm′ ↼

]→ P n′ be a convergent bound for g. Then:

a. f × g : A×B → C ×D, (a, b) → (f(a), g(b)) has convergent bound:

⇀

[ A×B,Pm+m′ ↼

]→ P n+n′

46



⇀

[ a× b, q
↼

]→ (ω(
⇀

[ a, (q1, . . . , qm)
↼

] ), ξ(
⇀

[ b, (qm+1, . . . , qm+m′)
↼

] ))

which will be called the product convergent bound of ω and ξ.

b. If D ⊆ A then the composite map, fg : B → C has convergent bound:
⇀

[ B, Pm′ ↼

]→ P n

⇀

[ b, q
↼

]→ ω(
⇀

[ g(b), ξ(
⇀

[ b, q
↼

] )
↼

] )

which will be called the composite convergent bound of ω and ξ.

The following general set theoretic functions have the indicated convergent bounds.

c. Constant functions from A to C. The constant function sending A to c ∈ C, has
convergent bound:

⇀

[ A,Pm
↼

]→ P n

⇀

[ a, q
↼

]→ 0̂

d. Diagonal functions, ∆` : A → A`, for each non-negative integer `, sending elements
a ∈ A to (a, . . . , a), `-times. Such functions have the convergent bound:

⇀

[ A,Pm
↼

]→ Pm`

⇀

[ a, q
↼

]→ ∆`(q) ∈ (Pm)` ≡ Pm`

e. Projection functions such as: ΠA : A × B → A, (a, b) → a. Such a function has
the convergent bound:

⇀

[ A×B, Pm+m′ ↼

]→ Pm

⇀

[ (a, b), q
↼

]→ (q1, . . . , qm)

Here q is (q1, . . . , qm, qm+1, . . . , qm+`). Similarly for projection onto B.

f. Permutation functions such as A` → A`, (a1, . . . , a`) → (ae1 , . . . , ae`
) where (e1, . . . , e`)

is a permutation of (1, . . . , `). Such a function has the convergent bound:
⇀

[ A`, Pm`
↼

]→ Pm`

⇀

[ (a1, . . . , a`), (q1
, . . . , q

`
)

↼

]→ (q
e1

, . . . , q
e`

) ∈ (Pm)` ≡ Pm`

Here each q
j

lies in Pm.

g. For c ∈ Rn the function A → A×{c}, a → (a, c).Such a function has the convergent
bound:

⇀

[ A,Pm
↼

]→ Pm+`

⇀

[ a, q
↼

]→ (q, 0̂, . . . , 0̂)

47



PROOF: We prove the locally compact case of (b) – which has a slight subtlety – and

leave the rest to the reader. Let h : B → C be the composite fg and let ζ :
⇀

[ B, Pm′ ↼

]→
P n be the so-called composite convergent bound of ω and ξ defined in (b). Now we show
that ζ is truly a locally compact convergent bound for h.

Bound: Suppose that b, b′ ∈ B, ε′ ∈ Pm′
and ν(b − b′) ≤ ε′. Then since ξ is a

convergent bound for g it follows that:

ν(g(b)− g(b′)) ≤ ξ(
⇀

[ b, ε′
↼

] )

Now use g(b), g(b′) and ξ(
⇀

[ b, ε′
↼

] ) for a, a′ and ε in (4.2.1) expressing that ω is a
convergent bound for f . This gives:

ν(f(g(b))− f(g(b′))) ≤ ω(
⇀

[ g(b), ξ(
⇀

[ b, ε′
↼

] )
↼

] )

The left hand side is: ν(h(b)− h(b′)). The right hand side is: ζ(
⇀

[ b, ε′
↼

] ) giving:

ν(h(b)− h(b′)) ≤ ζ(
⇀

[ b, ε′
↼

] )

Thus ζ satisfies the bound condition for h.

Convergence′′: Let {ε′k}k be a sequence of elements of Pm′
where ε′k → 0̂ (k → ∞)

and let {bk}k be a bounded sequence of elements of B. We must show that ζ(
⇀

[ bk, ε
′
k

↼

]

) → 0̂ (k → ∞). Let ak = g(bk) and let εk = ξ(
⇀

[ bk, ε
′
k

↼

] ). By the convergence
condition for ξ as a convergent bound for g it follows that εk → 0̂ (k →∞). The subtlety
referred to earlier is that we must verify that {ak}k is a bounded sequence of elements
of A in order to utilize the convergence condition for ω as a convergent bound for f .
Lemma (4.3.1) tells us that {ak}k is a bounded sequence of elements of A. By the
convergence condition for ω as a convergent bound for f we have:

ω(
⇀

[ ak, εk

↼

] ) → 0̂ (k →∞)

The left hand side – i.e. what is converging to 0̂ – is: ω(
⇀

[ g(bk), ξ(
⇀

[ bk, ε
′
k

↼

] )
↼

] ) which

equals ζ(
⇀

[ bk, ε
′
k

↼

] ). Hence have established that ζ satisfies the convergence condition
for h.

The preceding immediately gives.

4.3.4 SUMMARY C4-ness of Functions with Convergent Bounds: The class
of functions with convergent bounds (or continuous convergent bounds or locally compact
convergent bounds) from subsets of Rm to subsets of Rn for various m’s and n’s is tb C4,
(2.4.6).

48



Because (4.3.3) show how to construct convergent bounds we have:

4.3.5 SUMMARY Constructive Convergent Bounds: Let V be a set of func-
tions mapping some subsets of Rm to subsets of Rn for various m’s and n’s. Assume that
for each A ⊆ Rm, C ⊆ Rn and map f : A → C in V there is an explicit convergent bound
ωf for f . If B ⊆ Rm′

, D ⊆ Rn′ and g : B → D is a map in C4(V) then the constructions
in (4.3.3) give an explicit convergent bound, ωg, for g. The same holds for continuous
convergent bounds and locally compact convergent bounds mutatis mutandis.

Turning this around:

4.3.6 DEFINITION Constructive Convergent Bounds: Suppose that B ⊆ Rm′

and D ⊆ Rn′. A function g : B → D is said to have a constructive convergent bound
if g ∈ C4(V) for a set of functions V mapping some subsets of Rm to subsets of Rn for
various m’s and n’s and for each A ⊆ Rm, C ⊆ Rn and map f : A → C in V there is
an explicit convergent bound for f . In the preceding convergent bound may uniformly be
replaced by continuous convergent bound or locally compact convergent bound.

In section (4.2) we gave explicit convergent bounds for the functions opunary−, op+,
op−, op×, opq+, op+q, opq× and op×q. Let V denote the set consisting of:

{opunary−} ∪ {op+} ∪ {op−} ∪ {op×} ∪ {opq+}q∈R ∪ {op+q}q∈R ∪ {opq×}q∈R ∪ {op×q}q∈R

Then C4(V) is POLY , the polynomial functions, defined at (2.4.10). Thus we have:

4.3.7 Polynomial Functions Have Constructive Locally Compact Conver-
gent Bounds.

Previously, we distinguished various classes of structured functions on S(R; X) by the
stipulation that their coefficient functions (2.4.3) be of that class.35

4.3.8 DEFINITION Functions on S(R; X) with Constructive Convergent
Bounds: Let S, T ⊆ S(R; X). A structured function ϕ : S → T is said to have
constructive convergent bounds if for each z ∈ ∗S the function κϕz : κSz → κTϕ(z) has a
constructive convergent bound. Again, in the preceding convergent bound may uniformly
be replaced by continuous convergent bound or locally compact convergent bound.

The condition of having some form of constructive convergent bound is required of
functions to stabilize algorithms.36

35This is done in the second item of (2.4.8).
36But we still have to worry about the predicates.

49



4.3.9 DEFINITION CCB Algorithms: An algorithm A is called a constructive
convergent bound algorithm or CCB algorithm if:

• A is a structured algorithm, (2.3.1).

• The coefficient functions (2.4.3) of A have constructive convergent bounds.

If all the convergent bounds are continuous convergent bounds the algorithm is referred to
as a continuous CCB algorithm. If all the convergent bounds are locally compact convergent
bounds the algorithm is referred to as a locally compact CCB algorithm.

Since Algebraic Algorithms are those whose coefficient functions are polynomial and
polynomial functions have locally compact constructive convergent bounds:

4.3.10 Algebraic Algorithms have Constructive Convergent Bounds and are
locally compact CCB algorithms.

4.4 Rewriting Magic

Our fundamental strategy for building the sequence of algorithms {Ak}k which stabilizes
A is to modify A by replacing coefficients in R with bracket coefficients from BC and
then using arithmetic in BC instead of arithmetic in R. To be successful, we must be
able to “eliminate” a discrete37 set whose complement is open and where p is continuous
on this open complement. This is done by way of a rewriting rule for BC. We refer
to this as “Rewriting Magic” because it is so simple yet effective it seems like magic.
Theorem (4.2.11) is fundamental to verifying that everything in this section behaves as
claimed but not needed for an understanding of the technique.

4.4.1 DEFINITION S-Rewriting: The S-rewriting of a bracket coefficient [e, ε] ∈
BC is denoted S ./ [e, ε]. It lies in BC and is defined as:

{
[s, 0̂] if there is a unique s ∈ S with ν(e− s) ≤ ε
[e, ε] otherwise

It may happen that S ./ [e, ε] = [e, ε] because e is not within ε of any element of S or
e is within ε of more than one element of S or e ∈ S and ε = 0̂. If S is the empty set then
S-rewriting makes no changes. For now assume that there is an oracle announcing when
the condition holds that “there is a unique s ∈ S with ν(e− s) ≤ ε”. When S is finite, as
is often the case, this can be ascertained by direct check.

37See (4.6.2) for the definition of discrete.

50



4.4.2 DEFINITION Approximation Sequence: A sequence {Ek}k, in BC, con-
verges to [r, 0̂] if (Ek)R → r ∈ R and (Ek)P → 0̂ ∈ P . If in addition there is an integer
M s.t. k ≥ M ⇒ (Ek)P ≥ ν((Ek)R − r) then {Ek}k is called an approximation sequence
for r. In case (Ek)P ≥ ν((Ek)R − r) for all k then {Ek}k is called a strict approximation
sequence for r. Typically we speak of (strict) approximation sequences and drop the “for
r”. r is implicit because the sequence converges to [r, 0̂].

4.4.3 NOTE: If r ∈ R and {Ek}k is a sequence of elements of BC where {(Ek)P}k

converges to 0̂ in P and there is an integer M where k ≥ M ⇒ (Ek)P ≥ ν((Ek)R − r)
then {(Ek)R}k must converge to r. Hence, {Ek}k is an approximation sequence for r.

An important way in which approximation sequences arise is from convergent approx-
imations, (3.1.10).

4.4.4 EXAMPLE How Approximation Sequences Arise from Convergent
Approximations: Suppose that we have a sequence of pairs of maps: {(ρk : R →
R,αk : R → P )}k which form a convergent approximation (3.1.10) for R. Let
r ∈ R. Then the sequence {[ρk(r), αk]}k is an approximation sequence for r and is a strict
approximation sequence for r if {(ρk : R → R,αk : R → P )}k is a strict convergent
approximation.

How does S-rewriting affect convergence and approximation? Under reasonable as-
sumptions S-rewriting: a) does not introduce unwarranted convergence; b) preserves
convergence; c) converts approximation to finite convergence. This is why S-rewriting
stabilizes algorithms. Here is the definition of finite convergence and then the formal
statement and proof of how S-rewriting affects convergence.

Convergence is defined for P , R, P n, Rn and S(R; X) in Sections 3.1 and 3.2. There
is a naive notion of convergence which does not use any sense of nearness. Namely, that
the sequence gets there in a finite number of steps. It is useful and necessary to consider
convergent sequences with the property that when they converge to certain pre-specified
values – such as 0 or 1 in R – the convergence is actually finite convergence.38

4.4.5 DEFINITION S-Convergence: Let {dk}k be a sequence of elements in a set
T where convergence is defined39 and let S ⊂ T . We say that {dk}k is an S-convergent
sequence if:

1. {dk}k is a convergent sequence, say converging to d.

38Finite convergence has essentially appeared with regard to continuity of predicates.
39For example, T may equal R, Rn or S(R; X).

51



2. If d ∈ S then the convergence is finite convergence, i.e. there exists an integer K
such that k ≥ K ⇒ dk = d.

We write dk
S→ d as a shorthand for “{dk}k S-converges to d”.

Typically when considering S-convergence, S is a discrete set (4.6.2). If S is the empty
set then S-convergence is simply ordinary convergence.

4.4.6 PROPOSITION Rewriting Magic: Let {[ek, εk]}k be a sequence in BC.
a. If {εk}k converges to 0̂ and {S ./ [ek, εk]}k converges to [r, 0̂] then {[ek, εk]}k converges
to [r, 0̂].

Now assume that {[ek, εk]}k converges to [r, 0̂].

b. {S ./ [ek, εk]}k converges to [r, 0̂].

c. If {[ek, εk]}k is an approximation sequence and r is a discrete point of S then {S ./
[ek, εk]}k finitely converges to [r, 0̂].

PROOF: To simplify the notation in the proof let [fk, φk] = S ./ [ek, εk] for each k.

a. Since εk → 0̂ by assumption, we only have to show that ek → r. We claim that:

4.4.7 ν(r − ek) ≤ ν(r − fk) +̂ εk

This is because fk is either ek or an element sk ∈ S where ν(ek− sk) ≤ εk. If fk = ek then
ν(r − ek) = ν(r − fk) = ν(r − fk) +̂ 0̂ ≤ ν(r − fk) +̂ εk by (3.1.1,P0) and (3.1.1,P1). If
fk = sk then ν(r−ek) = ν((r−fk)+(sk−ek)) ≤ ν(r−fk) +̂ ν(sk−ek) ≤ ν(r−fk) +̂ εk by
(3.1.5,ν1), (3.1.5,ν2) and (3.1.1,P1). ν(r − fk) → 0̂ by definition of fk → r and εk → 0̂
by assumption. (3.1.1,P3) then implies that ν(r − fk) +̂ εk → 0̂. Together with (4.4.7)
this implies that ν(r − ek) → 0̂ and so ek → r.

b. We claim that:

4.4.8 ν(r − fk) ≤ ν(r − ek) +̂ εk

This is because fk is either ek or an element sk ∈ S where ν(ek− sk) ≤ εk. If fk = ek then
ν(r − fk) = ν(r − ek) = ν(r − ek) +̂ 0̂ ≤ ν(r − ek) +̂ εk by (3.1.1,P0) and (3.1.1,P1). If
fk = sk then ν(r− fk) = ν((r− ek) + (ek − sk)) ≤ ν(r− ek) +̂ ν(ek − sk) ≤ ν(r− ek) +̂ εk

by (3.1.5,ν2) and (3.1.1,P1). ν(r − ek) → 0̂ by definition of ek → r and εk → 0̂ by
assumption. (3.1.1,P3) then implies that ν(r − ek) +̂ εk → 0̂. Together with (4.4.8) this
implies that ν(r − fk) → 0̂ and so fk → r.

φk is either εk or 0̂. Hence φk ≤ εk. Then εk → 0̂ ⇒ φk → 0̂.

52



c. Since εk → 0̂, (3.1.1,P3) implies that εk +̂ εk → 0̂. Since r is a discrete point of S there
is an integer M1 such that k ≥ M1 ⇒ there is no s ∈ S with ν(r − s) < εk +̂ εk except
for s = r. (Otherwise one may construct a sequence of elements of S converging to r.)
Since {[ek, εk]}k is an approximation sequence there is an integer M2 such that k ≥ M2 ⇒
εk ≥ ν(ek− r). Let M = max{M1,M2}. Say k ≥ M and suppose that there is s ∈ S with
ν(ek − s) < εk. Then ν(r − s) = ν((r − ek) + (ek − s)) ≤ ν(r − ek) +̂ ν(ek − s) ≤ εk +̂ εk.
By choice of M1 this implies that s = r. Hence for k ≥ M , r is the unique element of S
with ν(ek − r) < εk. Hence k ≥ M ⇒ S ./ [ek, εk] = [r, 0̂]. Thus the convergence to [r, 0̂]
is finite.

Up to this point S-rewriting has only been with respect to R with no mention of Rn

or S(R; X). The extension to Rn is basically a matter of replacing R by Rn as we now
explain. Then we explain the extensions to S(R; X).

4.4.9 DEFINITION S-Rewriting for BC[Rn, P n]: Suppose that S ⊂ Rn. The
S-rewriting of a bracket coefficient: [e, ε] ∈ BC[Rn, P n] is denoted S ./ [e, ε]. It lies in
BC[Rn, P n] and is defined as:

{
[s, 0̂] if there is a unique s ∈ S where ν(e− s) ≤ ε

[e, ε] otherwise

In the same spirit elements of (BC[R, P ])n have a corresponding S-rewriting.

4.4.10 DEFINITION S-Rewriting for (BC[R, P ])n: Suppose that S ⊂ Rn. The
S-rewriting of a bracket coefficient: w ∈ (BC[R, P ])n is denoted: S ./ w. It lies in
(BC[R, P ])n and is defined as:





⇀

[ s, 0̂
↼

] if there is a unique s ∈ S where ν(wR − s) ≤ wP

w otherwise

We could define approximation sequences for BC[Rn, P n] and (BC[R,P ])n and prove
the corresponding proposition to (4.4.6). Instead we wait until the next section and do
this for S(BC[R,P ]; X) where it is really needed.

4.5 S(BC[R,P ]; X)

S(R; X) is defined in Section (2.2). If R is replaced by BC[R, P ], this gives the proper
technical definition of S(BC[R, P ]; X). However, it is handy to think of S(BC[R, P ]; X)
by thinking of it as being S(R; X) but with the R coefficients replaced by bracket coeffi-
cients from BC[R, P ]. This section presents fundamental considerations about BC[R,P ],
especially the extension of previous concepts to BC[R, P ].

53



Let us now present S-rewriting for S(BC[R, P ]; X). First, here is an example.

Suppose that: ([e1, ε1], x1, ([e2, ε2], [e3, ε3], ([e4, ε4], x2))) ∈ S(BC[R,P ]; X) where the
ei’s lie in R, the εi’s lie in P and the xj’s lie in X. If there is a unique element
(s1, x1, (s2, s3, (s4, x2))) ∈ S where for each i: ν(ei − si) ≤ εi then the original element
is S-rewritten to: ([s1, 0̂], x1, ([s2, 0̂], [s3, 0̂], ([s4, 0̂], x2))). As usual, if there is not such
unique element of S then S-rewriting makes no change.

With this same example let us illustrate the extension of the bR and bP notation to
S(BC[R,P ]; X).

([e1, ε1], x1, ([e2, ε2], [e3, ε3], ([e4, ε4], x2)))R = (e1, x1, (e2, e3, (e4, x2))) ∈ S(R; X) and
([e1, ε1], x1, ([e2, ε2], [e3, ε3], ([e4, ε4], x2)))P = (ε1, x1, (ε2, ε3, (ε4, x2))) ∈ S(P ; X).

Unfortunately, the precise definitions are more technical.

4.5.1 DEFINITION ()R and ()P Projections for S(BC[R, P ]; X): Suppose
that u ∈ S(BC[R, P ]; X). Let m denote ]u. Let ([e1, ε1], . . . , [em, εm]) be κu. Then

κuR = (e1, . . . , em)

κuP = (ε1, . . . , εm)

uR is an element of S(R; X) and is defined as:

uR ≡ 〈∗u, κuR〉 = 〈∗u, (e1, . . . , em)〉

uP is an element of S(P ; X) and is defined as:

uP ≡ 〈∗u, κuP 〉 = 〈∗u, (ε1, . . . , εm)〉

Note that with this definition:40

∗(uR) = ∗u and κ(uR) = (κu)R

∗(uP ) = ∗u and κ(uP ) = (κu)P

As defined at (4.1.3), “
⇀

[ ,
↼

] ” is the constructor to reassemble what “()R” and “()P ”
take apart. Now that “()R” and “()P ” have been extended so that they can take apart

elements of S(BC[R,P ]; X), we must extend “
⇀

[ ,
↼

] ” to put them back together again.

40This shows that we may simply write “κuR” since both interpretations: κ(uR) and (κu)R are equal.
Similarly we may simply write “κuP ’.

54



4.5.2 DEFINITION “
⇀
[ ,

↼
] ” for S(BC[R, P ]; X): Suppose that α ∈ Pm and

a ∈ S(R; X) where ]a = m. Then
⇀

[ a, α
↼

] is an element of S(BC[R,P ]; X) and is
defined as:

⇀

[ a, α
↼

]≡ 〈∗a,
⇀

[ κa, α
↼

] 〉

Note that the “
⇀

[ κa, α
↼

] ” makes sense because κa ∈ Rm since ]a = m. Also,

〈∗a,
⇀

[ κa, α
↼

] 〉 makes sense because
⇀

[ κa, α
↼

] ∈ BC[R,P ]m. With this definition:

∗(
⇀

[ a, α
↼

] ) = ∗a and κ(
⇀

[ a, α
↼

] ) =
⇀

[ κa, α
↼

]

Here is how “()R”, “()P ” and “
⇀

[ ,
↼

] ” interact. Suppose that α ∈ Pm and a ∈ S(R; X)
where ]a = m. Then:

4.5.3
⇀

[ a, α
↼

] R= a and
⇀

[ a, α
↼

] P = 〈∗a, α〉

Suppose that u ∈ S(BC[R, P ]; X) and let m = ]u. Then m = ](uR) and κuP ∈ Pm.
Hence the following equation makes sense.41

4.5.4 u =
⇀

[ uR, κuP

↼

]

Now S-Rewriting for S(BC[R, P ]; X). Roughly speaking, when this S rewriting makes
a change, it replaces each bracket [ui, εi] which appears in u with [si, 0̂], where si is the
entry of s appearing in the same position as the bracket from u. Formally speaking:

4.5.5 DEFINITION S-Rewriting for S(BC[R, P ]; X): Suppose that S ⊂
S(R; X). The S-rewriting of an element u ∈ S(BC[R, P ]; X) is denoted S ./ u. It
lies in S(BC[R, P ]; X) and is defined as follows: If there is a unique element s ∈ S

satisfying 1 and 2 below then S ./ u is defined to be:
⇀

[ s, 0̂
↼

] . Otherwise S ./ u is simply
u, i.e. there is no change. Conditions 1 and 2 are:

1. ∗u = ∗s.
This implies that ]u = ]s. Let ` denote this integer. Then κu ∈ BC[R,P ]` so that

(κu)R, κs ∈ R` and (κu)P ∈ P `.

2. ν((κu)R − κs) ≤ (κu)P .

41It is also true and is the S(BC[R,P ];X) generalization of (4.1.4).

55



In the same family of ideas we extend the notion of approximation sequence defined
at (4.4.2) to S(BC[R, P ]; X).

4.5.6 DEFINITION Approximation Sequences for S(BC[R, P ]; X): Suppose
that a ∈ S(R; X) and {ak}k is a sequence in S(BC[R,P ]; X). We say that {ak}k is an
approximation sequence for a if there is an integer M where for k ≥ M the following three
conditions hold:

1. ∗a = ∗ak.

This implies that ]a = ]ak for k ≥ M . Let m denote this integer. Now κa ∈ Rm and
for k ≥ M , κak ∈ BC[R,P ]m. Thus κakR ∈ Rm and κakP ∈ Pm, for k ≥ M .

2. Starting with k ≥ M : κakP → 0̂ (k →∞).

3. ν(κakR − κa) ≤ κakP .

Typically we speak of approximation sequences and drop the “for a”. a is implicit

because the sequence {ak}k converges to
⇀

[ a, 0̂
↼

] ∈ S(BC[R, P ]; X). An approximation
sequence is called a strict approximation sequence if the conditions hold for all k.

(4.4.4) showed how convergent approximations for R yield approximation sequences
for any r ∈ R. The following construction shows how a convergent approximation for
R yields approximation sequences in S(BC[R,P ]; X) for every element of S(R; X). It is
also a kind of “diagonal extension” of convergent approximations for R to S(R; X), see
(4.2.8). This is one of the fundamental constructions in stabilizing algorithms.

4.5.7 EXAMPLE How Approximation Sequences Arise from Convergent
Approximations: Suppose that we have a sequence of pairs of maps:

{(ρk : R → R,αk : R → P )}k

which form a convergent approximation for R. We construct a sequence of maps:

{S((ρk, αk); X) : S(R; X) → S(BC[R, P ]; X)}k,

where for any a ∈ S(R; X):
{S((ρk, αk); X)(a)}k

is an approximation sequence for a.

Let us define: S((ρk, αk); X)(a). Let m denote the integer ]a and let

{(ρk
m : Rm → Rm, αk

m : Rm → Pm)}k

56



be the diagonal extension of {(ρk, αk)}k, (4.2.8). Then κa ∈ Rm as is ρk
mκa. αk

mκa ∈
Pm. S((ρk, αk); X)(a) is defined as:

S((ρk, αk); X)(a) ≡ 〈∗a,
⇀

[ ρk
mκa, αk

mκa
↼

] 〉

It easily follows from the definitions that this is an approximation sequence for a. For
later reference we mention:

4.5.8 κS((ρk, αk); X)(a)P = αk
mκa

4.5.9 PROPOSITION Rewriting Magic for S(BC[R, P ]; X): Let {ak}k be a
sequence in S(BC[R,P ]; X) and let a ∈ S(R; X). Let m denote ]a.

a. If {κakP}k converges42 to 0̂ and {S ./ ak}k converges to
⇀

[ a, 0̂
↼

] then {ak}k converges

to
⇀

[ a, 0̂
↼

] .

Now assume that {ak}k converges to
⇀

[ a, 0̂
↼

] .

b. {S ./ ak}k converges to
⇀

[ a, 0̂
↼

] .

c. If {ak}k is an approximation sequence and a is a discrete point of S then {S ./ ak}k

finitely converges to
⇀

[ a, 0̂
↼

] .

PROOF: The idea is that for specific a ∈ S(R; X) the argument comes down to work-
ing in Rm, BC[R,P ]m and BC[Rm, Pm]. It then comes down to componentwise reasoning
and (4.5.9). There is one subtlety in (part a) which we now discuss. It may happen that
for a sequence {ak}k in S(BC[R, P ]; X) that {κakP}k converges to 0̂ without {ak}k having
any convergence. Consider the sequence {([r, 0̂], xk)}k where r ∈ R, 0̂ ∈ P and the xk’s
lie in X. For this sequence, κakP = 0̂ for all k and so {κakP}k certainly converges to 0̂.
However, this sequence converges if and only if the xk’s eventually become constant. I.e.
there is an M and x ∈ X where k ≥ M ⇒ xk = x. In this case the sequence converges to

([r, 0̂], x). The assumption in (part a) that {S ./ ak}k converges to
⇀

[ a, 0̂
↼

] implies that
there is an M where k ≥ M ⇒ ∗ak = ∗a and no ∗ak instability can occur. The remainder
is left to the reader.

In (4.2.2) we presented the extension to bracket coefficients of functions with conver-
gent bounds. These were functions from subsets of Rm to subsets of Rn for various m’s
and n’s. At (4.3.8) we presented the notion of functions on S(R; X) having constructive
convergent bounds. We now show how functions on S(R; X) with constructive convergent
bounds get extended to S(BC[R, P ]; X) in the spirit of (4.2.2).

42The following 0̂ is 0̂, . . . , 0̂ in Pm.

57



4.5.10 CONSTRUCTION Extension of Maps with Convergent Bounds to
S(BC[R, P ]; X): Let A,C ⊆ S(R; X), ϕ : A → C be a structured function with
constructive convergent bound, (4.3.8). We shall construct A′, C ′ ⊆ S(BC[R,P ]; X) and
a structured map Φ : A′ → C ′ and we do this slice-by-slice.43 Suppose that z ∈ ∗A
and suppose κAz ⊆ Rm. Consider the set:

⇀

[ κAz, P
m

↼

] , (4.1.5), (2.4.1). Although A′

is not yet defined, this set
⇀

[ κAz, P
m

↼

] will eventually be κA′
z. For now, we use the

⇀

[ κAz, P
m

↼

] ’s to build up A′. We apply z to
⇀

[ κAz, P
m

↼

] , (2.4.2), to obtain elements
in S(BC[R, P ]; X). Let Az

′ denote:

{q ∈ S(BC[R, P ]; X)|∃u ∈
⇀

[ κAz, P
m

↼

] where q = z(u) (= 〈z, u〉)}

In other words, Az
′ can be described:

4.5.11 Az
′ = 〈z,

⇀

[ κAz, P
m

↼

] 〉 where κAz ⊆ Rm

Since ∗ takes the value z on all elements of Az
′, it follows that the Az

′’s are disjoint, for
distinct z’s. Finally, define A′ by:

A′ ≡ ]z∈∗AAz
′

Now that A′ has been defined, observe: ∗A′ = ∗A, A′
z = Az

′ and that κA′
z =

⇀

[ κAz, P
m

↼

] .

Let us illustrate some of these considerations. Suppose that z = (∗, x1, (∗, ∗, (∗, x2)))
and A contains an element a = (a1, x1, (a2, a3, (a4, x2))), so that z = ∗a. Then a con-
tributes:

{([a1, p1], [a2, p2], [a3, p3], [a4, p4]) =
⇀

[ κa, (p1, . . . , p4)
↼

] |p1, p2, p3, p4 ∈ P}

to
⇀

[ κAz, P
4

↼

] = κA′
z and contributes:

{([a1, p1], x1, ([a2, p2], [a3, p3], ([a4, p4], x2))) = 〈z,
⇀

[ κa, (p1, . . . , p4)
↼

] 〉|p1, p2, p3, p4 ∈ P}

to Az
′ = A′

z.

For C ⊆ S(R; X), the set C ′ is defined similarly and we may use that: ∗C ′ = ∗C and

for v ∈ ∗C: C ′
v = Cv

′ and κC ′
v =

⇀

[ κCv, P
n

↼

] .

Since ϕ is a structured map with constructive convergent bound, for each z ∈ ∗A,
κϕz has a convergent bound, (4.3.8). Assume that κAz ⊆ Rm and κCϕ(z) ⊆ Rn, so

43See (2.4.1) – and especially the footnote there – for the slice view of A. (2.4.2) shows how ϕ is
determined slice-by-slice.

58



that κϕz : κAz → κCϕ(z). Let ωκϕz denote a convergent bound for κϕz so that ωκϕz :
⇀

[

κAz, P
m

↼

]→ P n, (4.2.1). As defined at (4.2.2), κϕz extends to a map from
⇀

[ κAz, P
m

↼

]

to
⇀

[ κCϕ(z), P
n

↼

] . Using the formal notation of (4.2.2), this map would be denoted:
κϕzωκϕz

. We abbreviate this to: κϕzω. Thus

κϕzω :
⇀

[ κAz, P
m

↼

]→
⇀

[ κCϕ(z), P
n

↼

]

and since
⇀

[ κAz, P
m

↼

] = κA′
z and

⇀

[ κCϕ(z), P
m

↼

] = κC ′
ϕ(z) we have:

κϕzω : κA′
z → κC ′

ϕ(z)

Since ∗A = ∗A′ and ∗C = ∗C ′ we have that

Strucϕ : ∗A′ → ∗C ′

Use Strucϕ as the map Struc in (2.4.4). Use κϕzω as the map Coef(z) in (2.4.4). Then
by (2.4.4) there is a unique structured map Φ : A′ → C ′ with StrucΦ = Struc = Strucϕ

and κΦz = κϕzω for z ∈ ∗A′ = ∗A.

Φ is the desired extension of ϕ.

4.5.12 NOTE for later reference that with the notation in (4.5.10) if E ∈ S(BC[R,P ]; X)
it is easily verified that ER ∈ A if and only if E ∈ A′.

4.5.13 PROPOSITION Approximation Sequences Mapping to Approxima-
tion Sequences: Let A,C ⊆ S(R; X). Let ϕ : A → C be a structured function with
continuous constructive convergent bound. Let Φ : A′ → C ′ be the structured map just
constructed in (4.5.10). Suppose that {Ek}k is a sequence of elements of BC which is an
approximation sequence for a ∈ S(R; X) and suppose that there is an integer M where
k ≥ M ⇒ Ek ∈ A′. Then the sequence {Φ(Ek)}k≥M is an approximation sequence for the
element ϕ(a) of C.

PROOF: {(Ek)R}k converges to a because {Ek}k is an approximation sequence for
a. Hence, there is an integer N where k ≥ N ⇒ ∗(Ek)R = ∗a. Then Ek ∈ A′

∗a for
k ≥ max{M,N}. For the duration of the proof assume that k ≥ max{M,N}. Since Φ
is a structured function, and ∗Φ(a) = Strucϕ(∗a), it follows that ∗Φ(Ek) = Strucϕ(∗a).
Hence it remains to show that {κΦ(Ek)}k≥max{M,N} is an approximation sequence for

κϕ(a). By (4.4.3) it suffices to show that {κΦ(Ek)P}k≥max{M,N} converges to 0̂ and that
there is an integer L ≥ max{M, N} where k ≥ L ⇒

κΦ(Ek)P ≥ ν(κΦ(Ek)R − κϕ(a))

59



κϕ∗a has a convergent bound – call it ω – because ϕ is a structured map with con-
structive convergent bound, (4.3.8). Assume that κA∗a ⊆ Rm and κCϕ(∗a) ⊆ Rn, so that

κϕ∗a : κA∗a → κCϕ(∗a) and ω :
⇀

[ κA∗a, Pm
↼

]→ P n, (4.2.1). Then

κΦ(Ek) =
⇀

[ κϕ∗a(κ(Ek)R), ω(κEk)
↼

]

{κ(Ek)R}k converges to κa – and so is a Cauchy sequence – because {Ek}k is an
approximation sequence for a. {κ(Ek)P}k converges to 0̂, also because {Ek}k is an ap-
proximation sequence. Hence {ω(κEk)}k converges to 0̂ by (4.2.1,Convergence′). This
shows that {κΦ(Ek)P}k≥max{M,N} converges to 0̂.

There is L ≥ max{M, N} where k ≥ L ⇒ κ(Ek)P ≥ ν(κ(Ek)R − κa) because {Ek}k

is an approximation sequence for a. Thus k ≥ L ⇒ ω(κEk) = ω(
⇀

[ κ(Ek)R, κ(Ek)P

↼

] ) ≥
ν(κϕ∗a(κ(Ek)R)− κϕ∗a(κa))

because ω is a continuous convergent bound for κϕ∗a. This concludes the proof since:

ω(κEk) = κΦ(Ek)P

κϕ∗a(κ(Ek)R) = κΦ(Ek)R

κϕ∗a(κa) = κϕ(a)

4.6 Practical Topology

In vocational schools “Practical Mathematics” refers to the minimal amount of arithmetic
needed for daily survival. Very minimal, about what is needed to balance a checkbook.
Here “Practical Topology” refers to the minimal amount of point set topology used in
this paper. Again very minimal. Moreover, definitions are phrased in the most restricted
or useful way for this paper. There are no proofs in this section.

The concept of convergence in S(R; X), naturally leads to the concept of open and
closed sets and continuity of functions and predicates.

4.6.1 DEFINITION Interior, Open and Closed: Let X denote Rm for any
positive integer m or S(R; X). Assume that A ⊆ X . An element a ∈ A is an interior
point (element) of A if for every sequence {Ek}k of elements of X which converges to a
there is an integer M44 where k ≥ M ⇒ Ek ∈ A. A is an open subset of X if every
element of A is an interior point of A. A set is a closed subset of X if its complement is
open.

44The integer M depends upon the specific sequence {Ek}k.

60



The following are easily verified:

• The empty set and X itself are each an open and closed subset of X .

• The union of open sets is open, the intersection of closed sets is closed.

• For the case X = S(R; X), a is an interior point of A if and only if κa is an interior
point of κA∗a.

• For the case X = S(R; X), A is an open or closed subset of X if and only if κAz is
an open or closed subset of Rm for each z ∈ ∗A.

• In terms of sequences, A is closed if and only if for every convergent sequence {Ek}k

of elements of A the sequence converges to an element of A.

• The set of interior points of A is an open subset of X and is the largest open subset
of X lying in A.45

• Let A denote the set of points in X to which sequences of elements of A converge.46

A is a closed subset of X and is the smallest subset of X containing A. A is called
the closure of A.

4.6.2 DEFINITION Isolated and Discrete: Let X denote Rm for any positive
integer m or S(R; X). Assume that A ⊆ X . An element a ∈ A is an isolated point of
A if for every sequence {ak}k of elements of A which converges to a the sequence finitely
converges to a. I.e. there is an integer M47 where k ≥ M ⇒ ak = a. A is a discrete set
if every element of A is an isolated point of A. In the same spirit 0̂ is an isolated point of
P if for every sequence {pk}k of elements of P which converges to 0̂ the sequence finitely
converges to 0̂.

45Actually, it is a bit tricky to show that the set of interior points of A forms an open set. Suppose that
{Ek}k is a sequence converging to a and there is no integer M where k ≥ M ⇒ Ek is an interior point of
A. Then there is an infinite subsequence where none of the elements is an interior point of A. Restrict
to – and renumber – the subsequence, so that we may assume that {Ek}k is a sequence converging to a
and none of the Ek’s is an interior point of A. If there is k with Ek = a, it immediately follows that a is
not an interior point of A and we are done. So we assume that Ek 6= a for all k. Now suppose that X =
Rm. For each Ek there is E′

k in the complement to A where ν(Ek − E′
k) < ν(Ek − a). Then {E′

k}k is a
sequence of elements in the complement to A converging to a. Hence, a does not lie in the interior of A.
For the case X = S(R; X) one first restricts to a subsequence of the Ek’s where ∗Ek = ∗a and then one
works with {κEk}k converging to κa as in the case X = Rm.

46I.e. the sequences must lie wholly within A but they may converge to points of X outside of A.
A ⊆ A because for any element of A, the sequence consisting of just that point is a sequence lying in A
which converges to the given point.

47The integer M depends upon the specific sequence {ak}k.

61



It is easily verified that for the case X = S(R; X), a is an isolated point of A if and
only if κa is an isolated point of κA∗a.

Discreteness may be characterized in terms of S-convergence. Suppose that S ⊆
S(R; X). S is discrete if and only if every convergent sequence {sk}k of elements of S
is S-convergent. This is not quite as trivial as it first appears because a sequence of
elements of S may converge to an element outside of S. Consider the case where S is the
set of positive rational numbers of the form 1/n for positive integers n. The descending
sequence {1, 1/2, 1/3, 1/4, . . .} of elements of S converges to 0 and the convergence is not
finite convergence. However, 0 6∈ S and so this is still S-convergence. S is a discrete
subset of the real numbers.

4.6.3 DEFINITION Continuity of Functions: Suppose that α is a map from
A to C where A ⊆ RM and C ⊆ RN or A,C ⊆ S(R; X). α is continuous at a ∈ A if
{α(ak)}k converges to α(a) for any sequence {ak}k of elements of A which converges to
a.48 α is continuous on A if it is continuous at all a ∈ A.

It is easy to verify that for the case A,C ⊆ S(R; X) and α a structured map, α is
continuous if and only if καz is continuous for each z ∈ ∗A.

4.6.4 PROPOSITION Continuity of Functions with Convergent Bounds:
Suppose that α is a map from A to C where A ⊆ RM and C ⊆ RN and α has a

convergent bound or A,C ⊆ S(R; X) and α has a constructive convergent bound. Then α
is continuous on A.

We lied when we said there are no proofs in this section, but this is the only one,
except for the proof of (4.6.13).

PROOF: Suppose that A ⊆ Rm, C ⊆ Rn, α : A → C has convergent bound ω :
⇀

[ A,Pm
↼

]→ P n. Suppose that {ak}k is a sequence of elements of A converging to a ∈ A.
We must show that {α(ak)}k converges to α(a) ∈ C. To do this we must show that
for ε ∈ P n – where no component of ε is equal to 0̂ – there is M where for k ≥ M ,
ν(α(a) − α(ak)) < ε. Since ak → a in Rm, the sequence {ν(a − ak)}k converges to 0̂ in
Pm. Let δk ≡ ν(a− ak), By the convergence condition, (4.2.1):

ω(
⇀

[ a, δk

↼

] ) → 0̂ (k →∞)

Hence there is M where for k ≥ M :

ω(
⇀

[ a, δk

↼

] ) < ε

48Points of A where α is not continuous are called discontinuity points of α.

62



By the bound condition, it follows that for k ≥ M :

ν(α(a)− α(ak)) ≤ ω(
⇀

[ a, δk

↼

] ) < ε

The case A,C ⊆ S(R; X) is left to the reader.

Continuity of predicates is with respect to {TRUE, FALSE} having the discrete topol-
ogy. In other words:

4.6.5 DEFINITION Continuity of Predicates: Suppose that π is a map from A
to {TRUE, FALSE} where A ⊆ RM or A ⊆ S(R; X). π is continuous at a ∈ A if for any
sequence {ak}k of elements of A which converges to a there is an M such that k ≥ M ⇒
π(ak) = π(a).49 π is continuous on A if it is continuous at all a ∈ A.

4.6.6 DEFINITION DUO Functions and Predicates: Let γ be a function or
predicate defined on A where A ⊆ X for X = Rm or S(R; X). γ is a DUO50 function or
predicate if A has a decomposition:51 A = S ∪Q where S is a discrete subset of X , Q is
an open subset of X , and γ is continuous on Q. Such a decomposition of A is called a
DUO decomposition of A for γ. If γ is a function, it is a DUO function with convergent
bound if A has a decomposition: A = S ∪ Q where S is a discrete subset of X , Q is an
open subset of X , and γ has a convergent bound on Q. I.e. the restriction of γ to Q has a
convergent bound. γ is a D function or predicate if A is a discrete subset of X , i.e. Q is
empty. γ is an O function52 or predicate if A is an open subset of X , and γ is continuous
on A. I.e. S is empty. If γ is a function, it is an O function with convergent bound if A
is an open subset of X and γ has a convergent bound on Q.

4.6.7 EXAMPLE: The predicate IS ZERO(X) is a DUO predicate. R \ {0} is the
open set Q on which it is continuous and {0} is a discrete set S where it need not be
continuous.53

4.6.8 EXAMPLE: If the real numbers have their usual topology then the INTE-
GER PART OF function is a DUO function. Let S be the integers and let Q be the
reals which are not integers.

49Points of A where π is not continuous are called discontinuity points of π.
50DUO stands for “Discrete Union Open”.
51We emphasize that the union is not necessarily a disjoint union.
52There is a notion of open functions which is that the function carries open sets to open sets. This is

not related to a function being an O function.
53Typically IS ZERO(X) is not continuous at 0 but it is easy to construct examples of P and ν where

IS ZERO(X) is continuous at 0.

63



4.6.9 EXAMPLE: Polynomial functions are O functions. In fact polynomial functions
have O convergent bounds.

4.6.10 DEFINITION C, D, Ω and ∆ Sets of Functions and Predicates:
Suppose that γ is a function or predicate defined on A where A ⊆ X for X = Rm or
S(R; X). Let C(γ) be the set of points where γ is continuous and D(γ) be the set of
points where γ is not continuous. Namely D(γ) denotes the complement to C(γ) in A.
Considering C(γ) ⊆ X , Ω(γ) denotes the set of interior points of C(γ). ∆(γ) denotes the
complement to Ω(γ) in A.54

4.6.11 EXAMPLE: This example illustrates the importance of ∆(γ). More specifi-
cally, in this example instability arises from the discrete nature of the domain rather than
any lack of continuity of the predicate on its domain. This algorithm (fragment) has R
as the real numbers. For some purposes in trigonometry, one wishes to know if an angle
is 2π or an integer multiple of 2π.

Initialize: (angle)
· ·

step i: X = angle/π
step (i + 1): if IS EV EN INTEGER(X) goto · · ·

· ·

The predicate IS EV EN INTEGER has domain equal to the integers. The predicate
is continuous on this set because the integers are discrete. The instability of the algorithm
comes from the fact that the domain of the predicate is not an open set in the real numbers.
I.e. the difficulty comes from the discrete nature of the domain not lack of continuity of
the predicate on the domain. If a sequence in R converges to an integer – and does not
reach the integer in a finite number of steps – then it does not eventually get in and stay in
the domain of IS EV EN INTEGER. This is what causes instability of the algorithm.

Of course there is an artificial way to cause a function to be defined everywhere.
Suppose we have function or predicate F mapping to a set Z. Let us add the isolated
point NOT -DEFINED to Z. Wherever the function or predicate is not defined we now
define it by mapping the point to NOT -DEFINED. Now our function or predicate
is defined everywhere. Call this new defined-everywhere function G. Then ∆(F ) is the
intersection of the domain of F with D(G).

54Beware of the subtlety. Consider when A is the X-axis in X , the X–Y plane. Suppose γ is continuous,
so that C(γ) = A. The interior of the X-axis as a subset of the X–Y plane is empty! I.e. Ω(γ) = ∅ and
∆(γ) = A.

64



Since complementation reverses inclusion: ∆(γ) ⊇ D(γ). In general ∆(γ) contains
both points where γ is continuous and points where γ is not continuous. The extreme
cases where ∆(γ) only contains points where γ is continuous or only contains points where
γ is not continuous is characterized in the following, which is not difficult to verify:

4.6.12 PROPOSITION Extreme Cases for ∆(γ): Let γ be a function or predi-
cate defined on A. C(γ) = A if and only if D(γ) = ∅.55 C(γ) is an open set in X if and
only if ∆(γ) = D(γ).

∆(γ) is key to characterizing DUO functions and predicates.

4.6.13 PROPOSITION Characterization of DUO: Suppose that γ is a function
or predicate defined on A ⊆ X for X = Rm or S(R; X). γ is a DUO function or predicate
if and only if ∆(γ) is a discrete set. In this case A = ∆(γ)]Ω(γ) is a DUO decomposition
of A for γ.56 If A = S ∪ Q is any DUO decomposition of A for γ then Q ⊆ Ω(γ) and
∆(γ) ⊆ S.

PROOF: Ω(γ) is an open subset of X on which γ is continuous. Also, A is the
disjoint union of ∆(γ) and Ω(γ). Thus if ∆(γ) is discrete, A = ∆(γ) ] Ω(γ) is a DUO
decomposition of A for γ and γ is a DUO function or predicate.

Conversely, suppose that γ is a DUO function or predicate and A = S ∪Q is a DUO
decomposition of A for γ. Since, Ω(γ) is the largest open subset of X on which γ is
continuous, it follows that Q ⊆ Ω(γ). This implies that ∆(γ) – the complement to Ω(γ)
in A – is a subset of the complement to Q in A which is a subset of S. Hence, ∆(γ) is
discrete, as claimed.

We have also shown that Q ⊆ Ω(γ) and ∆(γ) ⊆ S.

Instability of algorithms derives from ∆(γ) not being empty for both predicates γ and
functions γ. For our main results we restrict consideration to functions having convergent
bounds, (4.2.1) on open sets with discrete complements. Such functions are automatically
continuous, (4.6.4), on the open sets. Hence, such functions are DUO functions. The
“magic” of bracket coefficients and “rewriting” is that they enable us to obtain a kind of
stability of algorithms even when the discrete problem sets are not empty.

4.6.14 EXAMPLE Isolated ∆(γ): Suppose that X is the set of real numbers with
its usual topology and A is the unit interval, [0, 1]. For a ∈ A let γ(a) = a. Then ∆(γ)
consists of the two end points {0, 1} and is a discrete set. ∆(γ) contains no discontinuity
points of γ. γ with this A is a DUO function.

55Of course, ∆(γ) may be empty.
56] indicates that the union is a “disjoint union”.

65



The examples of algorithms in Section (2.6) have polynomial functions which are
continuous. Let us look at the discontinuity sets of the predicates in each algorithm. For
this the following is useful:

4.6.15 PROPOSITION: If γ is a predicate defined on A,

D(γ) = γ−1(TRUE) ∩ γ−1(FALSE).

Now the examples.

Examples of Discontinuity Sets of Predicates.

4.6.16 DETERMINANT: The algorithm DET n presented at (2.6.1) has no predi-
cates.

4.6.17 DISCRIMINANT: The algorithm DISCn presented at (2.6.2) has one predi-
cate, p, with argument Answer. p(Answer) is: “IS ZERO(Answer)”, where Answer ∈
R. p−1(TRUE) = {0} while p−1(FALSE) = R. Hence, D(p) = {0}.

4.6.18 POLY-POSITIVE: The algorithm presented at (2.6.3) has one predicate, p,
with argument X. The predicate p(X) is: “IS GREATER THAN ZERO(X)”, where
X ∈ R. p−1(TRUE) = {r ∈ R|r ≥ 0} while p−1(FALSE) = {r ∈ R|r ≤ 0}. Hence,
D(p) = {0}.

4.6.19 REPEAT-ADD: The algorithm presented at (2.6.4) has one predicate, p, with
argument X. The predicate p(X) is: “IS GREATER THAN OR EQUAL TO ONE(X)”,
where X ∈ R. p−1(TRUE) = {r ∈ R|r ≥ 1} while p−1(FALSE) = {r ∈ R|r ≤ 1}.
Hence, D(p) = {1}.

4.6.20 BUCHBERGER: As before (2.6.5), (3.3.6) we discuss selected aspects of
this algorithm. In the previous discussion of extracting leading term, two predicates ap-
peared. One was IS ZERO and as explained in (2), D(IS ZERO) = {0}. The other was
p(sequence) = IS EMPTY (sequence). The empty sequence () is an element of S(R; X).
IS EMPTY −1(TRUE) = {()} and IS EMPTY −1(TRUE) = {()}. It is easily checked
that if dm → () in S(R; X) then there is an M such that m ≥ M ⇒ dm = (). Hence, ()
is an isolated point57 of S(R; X). Since () 6∈ IS EMPTY −1(FALSE), the fact that () is
isolated implies that () 6∈ IS EMPTY −1(FALSE). Thus
IS EMPTY −1(TRUE) ∩ IS EMPTY −1(FALSE) = ∅. Hence, D(IS EMPTY ) = ∅.

57See (4.6.2) for the definition of isolated.

66



There are a few additional considerations we wish to mention here. Consider the
common predicate ARE EQUAL(d, e) for d, e ∈ U ⊂ S(R; X). It may be decomposed
into more elementary predicates. For example, first d and e may be checked for having the
same structure. This may be done as follows. Let z be an element of X which does not
appear in any of the elements of U . If necessary, enlarge X and adjoin such an element z.
Let Z be a map which is defined like the map ∗ except that Z replaces elements of R in
sequences by z instead of by ∗. Then Z is a polynomial structured map Z : U → S(R; X)
and the image of Z lies in S(R; X)0 a discrete58 subset of S(R; X). Hence the first part
of a test for equality factors through a polynomial map Z and a predicate on S(R; X)0.
Since S(R; X)0 is discrete, the predicate on S(R; X)0 has empty discontinuity set. For
d, e which pass the first test, i.e. Z(d) = Z(e), the second test is simply to check whether
κd = κe. Such κd and κe lie in the same Rn and can be written κd = (d1

′, . . . , dn
′), κe =

(e1
′, . . . , en

′) with the di’s and ei’s in R. One can form κd−κe = (d1
′− e1

′, . . . , dn
′− en

′).
Then testing if κd = κe reduces to testing if each di

′ − ei
′ is zero with IS ZERO and

an IS EMPTY predicate for stepping through the sequence: (d1
′ − e1

′, . . . , dn
′ − en

′).
As before, D(IS EMPTY ) = ∅ and D(IS ZERO) = {0}. The bottom line is that by
decomposing ARE EQUAL(d, e) into more elementary predicates one is able to reach the
case where the cumulative discontinuity set for all the predicates replacing ARE EQUAL
is simply 0.

The presence of a rich discontinuity set need not cause an algorithm to be unstable.
The following algorithm takes inputs from R and the output is precisely the same as the
input. Hence the algorithm is stable. The example has been designed for simplicity to
illustrate the point. A complex algorithm may contain one or more program branches with
respect to predicates with large discontinuity sets and they may not contribute instability
to the algorithm. We do not know if such inessential predicates can be detected and
removed automatically.

4.6.21 EXAMPLE IRRELEVANT-DISCONTINUITY-SET: R = R and we
are in the situation of the example ABSOLUTE VALUE (3.1.6). The inputs are
elements of R.

Initialize: (X)
step 1: goto step 3 if X is rational
step 2: stop (X)
step 3: stop (X)

The discontinuity set of IS RATIONAL is R.

It should be noted that for algebraic algorithms and CCB algorithms, defined at (4.3.9),

58See (4.6.2) for the definition of discrete.

67



if ∆(p) = ∅ for all predicates p in A, then A is stable. Our methods provide a way to
stabilize A if ∆(p) 6= ∅ for some predicate p as long as ∆(p) is discrete.

5 Stability Theorems

5.1 Overview of Main Results

At this point it may be helpful if we sketch our main results before getting bogged down
in technical details. To this end we begin with a basic set of hypotheses for an algorithm
A.

5.1.1 HYPOTHESES:

• A is a continuous CCB algorithm, (4.3.9).

• The domain of the function in each “local assignment from computation” step of A
is an open set of S(R; X).

• For the predicate Predicate in each “conditional goto” step of A there is a discrete
set SPredicate where the domain of Predicate equals SPredicate ∪ Ω(Predicate).

The hypotheses about functions having open domains and constructive convergent
bounds may be weakened. We do so in a later section but until further notice we assume
that the conditions in (5.1.1) are satisfied. Let us now describe a stability theorem which
eventually gets put in a more general form.

We will pass from the algorithm A defined on (a subset of) S(R; X) to a new algo-
rithm, denoted BC(A), defined on S(BC[R, P ]; X). In fact, the syntax of the original
algorithm is unchanged, one simply changes the semantics. The input of BC(A) consists
of bracket coefficients, i.e. elements of S(BC[R, P ]; X). The main change to the semantics
is how operations are performed and how a “conditional goto” is treated. “Initialize”, ab-
solute “goto” and “stop” steps are essentially unchanged. The functions with constructive
convergent bounds of a CCB algorithm are extended to bracket coefficients using (4.2.2).
More about this when we give precise definitions.59

The execution of a “conditional goto” is conditional upon the result of evaluating a
predicate. Thus, extending a “conditional goto” from A to BC(A) involves describing

59Of course an algorithm may utilize arithmetic operations utilizing arithmetic values which do not
come from the input. For example suppose r ∈ R is built-in to the algorithm A and at some stage A
involves multiplication by r or addition of r to a data value. This is equivalent to applying one of the
operators: opr+, op+r, opr× or op×r for which the convergent bounds were presented between (4.2.1) and
(4.2.2).

68



how predicates are extended to bracket coefficients. The answer is to perform SPredicate-
rewriting on the arguments of the predicates of BC(A) and then apply the original pred-
icate from A to the first component(s) of the bracket coefficients. I.e. a “conditional
goto” step involves a predicate with arguments (from BC(A)) which are now elements of
S(BC[R,P ]; X). Suppose these arguments are a1, . . . , at. First do SPredicate-rewriting
for each of these arguments to obtain (possibly) different arguments b1, . . . , bt. Now
apply the original predicate (from A) to the arguments b1R, . . . , btR and “goto” the step
indicated by that result.60 The output of BC(A) lies in S(BC[R, P ]; X).

The stability theorem concerning BC(A) follows. An example showing that the con-
verse fails appears in (5.6.1).

5.1.2 THEOREM BC(A)-Stability: Suppose that a1, . . . , am ∈ S(R; X) is input
data for the algorithm A on which A terminates normally. Let the output of A(a1, . . . , am)
be b1, . . . , bn ∈ S(R; X). Assume that for each ai there is an approximation sequence
{a′ik}k of elements of S(BC[R,P ]; X). Then there is N where for k ≥ N BC(A) terminates
normally with input data (a′1k, . . . , a

′
mk). Let b′1k, . . . , b

′
nk ∈ S(BC[R,P ]; X) denote the

output of BC(A)(a′1k, . . . , a
′
mk), for k where BC(A)(a′1k, . . . , a

′
mk) terminates normally.

Then each {b′jk
}k≥N is an approximation sequence for bj.

To utilize the BC(A) construction and Theorem (5.1.2), one coerces the output of
BC(A) back to S(R; X).

5.1.3 DEFINITION Output Variable: An output variable of the algorithm A is
an internal, local variable which appears in the text of A in a “stop” step:61

at step i: “stop (X1, . . . , Xn)” Execution halts. The algorithm outputs the
sequence consisting of the values of the Xi’s.

Suppose that for each output variable OV of A, there is a discrete set SOV ⊂ S(R; X).
If no SOV is specified, let SOV be the empty set. The output of BC(A) is coerced to
S(R; X) by applying SOV -rewriting to the value of OV for output variables in “stop”
steps and then projecting onto S(R; X) using ()R. For more detail see (5.2.1). Let us call
this coerced algorithm BC(A)R. It has input data from S(BC[R, P ]; X) and output back
in S(R; X). The next important result is an immediate corollary to Theorem (5.1.2) or
at least to the proof of Theorem (5.1.2) in Section (5.3):

60This is the minimal amount of S-rewriting which may be done and still achieve stabilization. It may
be desirable to do S-rewriting more often, such as after every function step. If S is well chosen for the
problem, such additional S-rewriting may encourage sparsity of the data carried along by the algorithm.

61In the “stop” step presented, all the Xi’s which are internal, local variables – as opposed to elements
of S(R; X) – are output variable of A. Output variable may also appear in other steps of A besides a
“stop” step. In fact, if they do not also appear in a “local assignment from computation” step, they will
not be assigned values.

69



5.1.4 COROLLARY BC(A)R-Stability: Suppose that a1, . . . , am ∈ S(R; X) is
input data for the algorithm A, on which it terminates normally. Assume that for each
ai there is an approximation sequence {a′ik}k of elements of S(BC[R, P ]; X).

Now suppose that the output of A(a1, . . . , am) is b1, . . . , bn ∈ S(R; X). Then there is
N where for k ≥ N the output of BC(A)R(a′1k, . . . , a

′
mk) is b1k, . . . , bnk ∈ S(R; X). For

each bj, the sequence {bjk}k≥N converges to bj. If bj comes from an output variable OV
then the sequence {bjk}k≥N , SOV -converges to bj.

62

As mentioned earlier, in the construction of BC(A) and BC(A)R, no change was made
to the text or syntax of the original algorithm A. We simply changed how to interpret A;
i.e. changed the semantics. For BC(A)R, the output is coerced to back to S(R; X), which
is independent of the original algorithm A.

The previous results require approximation sequences for the input data to A. Suppose
that {pk}k is a sequence of elements of P which converges to 0̂. Let

{(ρk : R → R,αk : R → P )}k

be the identity convergent approximation arising from {pk}k, (3.1.12). This is a strict con-
vergent approximation. Plug this strict convergent approximation into (4.5.7) to obtain
the sequence of maps:

{S((ρk, αk); X) : S(R; X) → S(BC[R, P ]; X)}k,

where for any a ∈ S(R; X):
{S((ρk, αk); X)(a)}k

is a strict approximation sequence for a.

5.1.5 DEFINITION Apk: Suppose that A is a CCB algorithm and {pk}k is a se-
quence of elements of P which converges to 0̂. If a1, . . . , am ∈ S(R; X) is input data for
A then:

{S((ρk, αk); X)(a1)}k, . . . , {S((ρk, αk); X)(am)}k

are strict approximation sequences for a1, . . . , am. Let Apk
(a1, . . . , am) denote:

BC(A)R(S((ρk, αk); X)(a1), . . . ,S((ρk, αk); X)(am))

It immediately follows from Corollary (5.1.4):

62If, instead of coming from an output variable, bj comes from a constant in S(R; X) then {bjk}k≥N

is the constant sequence where bjk = bj for each k ≥ N .

70



5.1.6 COROLLARY Apk-Stability: Suppose that a1, . . . , am ∈ S(R; X) is input
data for the algorithm A. Suppose that the output of A(a1, . . . , am) is b1, . . . , bn ∈ S(R; X).
Then there is N where for k ≥ N the output of Apk

(a1, . . . , am) is b1k, . . . , bnk ∈ S(R; X).
For each bj, the sequence {bjk}k≥N converges to bj. If bj comes from an output variable
OV then the sequence {bjk}k≥N , SOV -converges to bj.

63

Typically, the sequence {pk}k ⊂ P where pk → 0̂ is kept fixed. When using floating
point approximation the sequence might be something like {1/10k}k. When the sequence
is kept fixed, we may write Ak in place of Apk

to avoid the extra level of subscript.
Whether we write Ak or Apk

, here is another interpretation of what is happening. View
{Ak}k as a sequence of algorithms approximating64 the original algorithm A.

The preceding corollary is an approximation result because it shows that for fixed input
a1, . . . , am: Ak(a1, . . . , am) → A(a1, . . . , am). In other words: {Ak}k pointwise converges
to A. We will present a stronger result, namely, that a degree of continuity or stability is
achieved.

It is natural to wonder if A can be written as a limit of stable or continuous algorithms.
The answer is “no”. Consider the algorithm Z which takes a rational number as input
and returns “TRUE” if the input is 0 and “FALSE” if the input is not 0. Any stable or
continuous function from the rationals - with the usual topology or notion of nearness - to
the set {“TRUE”,“FALSE”} - with the discrete topology - must be a constant function
which always returns “TRUE” or always returns “FALSE”.65 And of course any limit of
constant functions is a constant function. Hence, Z cannot be approximated by stable or
continuous algorithms or functions. Let us show how Z is approximated by our techniques.
For each positive integer k let Zk be the algorithm which takes a rational number as
input and returns “TRUE” if the input has absolute value less than or equal to 1/10k and
“FALSE” if the input has absolute value greater than 1/10k. If {q`}` is any sequence of
rational numbers with limit q - including the possibility that q = 0 - then limk(lim`Zk(q`))
= Z(q).

5.1.7 THEOREM A-Stabilization: Suppose that pi → 0̂ slowly.66 We write Ai

in place of Api
. Suppose that a1, . . . , am ∈ S(R; X) is input data for the algorithm A

63If, instead of coming from an output variable, bj comes from a constant in S(R; X) then {bjk}k≥N

is the constant sequence where bjk = bj for each k ≥ N .
64For good approximation behaviour we will have to assume that {pk} does not reach 0̂ too quickly.

For example the case where for each k: pk = 0̂, is not very interesting. In this case each Ak is simply A.
65This comes down to the fact that a continuous function carries a connected set to a connected set.
66The definition of pi → 0̂ slowly is that pi → 0̂ and if (oi) is any other sequence of elements of P with

oi → 0̂ then for any M there is N where i ≥ N ⇒ oi ≤ pM . 0̂ is not isolated in P , if there exists a
sequence of non-0̂ elements of P which converges to 0̂. It is easy to check that if 0̂ is not isolated in P
then pi → 0̂ slowly if and only if (pi) consists of non-0̂ elements of P and if 0̂ is isolated in P then any
sequence which approcahes 0̂ does so slowly. In this latter case a sequence approaches 0̂ if and only if
the terms eventually become 0̂.

71



on which it terminates normally. Assume that for each ak there is a sequence {akj}k of
elements of S(R; X) which converges to ak.

A. There is N which depends on a1, . . . , am where for i ≥ N there is an inte-
ger Mi and for j ≥ Mi Ai(a1j, . . . , amj) terminates normally. Moreover, the sequence
{Ai(a1j, . . . , amj)}j≥Mi

converges.

Let b1i, . . . , bni denote the limit: limj≥Mi
Ai(a1j, . . . , amj).

B. The sequence {b1i, . . . , bni}i≥N converges to A(a1, . . . , am).

Put differently this shows that:

5.1.8 limi(limjAi(a1j, . . . , amj)) = A(a1, . . . , am)

This is a strong stability result because it shows that as the input data to the Ai’s gets
close to a specific input of A then the outputs of the Ai’s gets close to the output of A.
This may be as strong a notion of stability or continuity as can be achieved!

The next key idea is an important variation of the construction of BC(A). This will
permit the use of inexact or approximate computation while still achieving the results of:
Theorem (5.1.2), Corollary (5.1.4), Corollary (5.1.6) and Theorem (5.1.7).

BC(A) extended A from S(R; X) to S(BC[R, P ]; X) by using BC-arithmetic and its
generalization (4.2.2) which is built upon arithmetic and convergent bounds in R and P .
Since we are using approximation anyway, we do not have to use exact arithmetic in R.
This is where approximate computation (5.4.1) will come in. Approximate computation
allows us to use approximate arithmetic in R for the R component of a bracket coefficient.
For example, if R is the real numbers or lies in the real numbers, approximate arithmetic
could be the arithmetic operations resulting from using fixed precision floating point
operations instead of exact arithmetic. Alternatively, if R is a topological ring consisting
of the inverse limit of a ring modulo powers of an ideal, the approximate arithmetic could
be the result of working in the ring modulo a specific power of the ideal instead of the
inverse limit.

BCk(A) will be used to denote this variant of BC(A) which utilizes approximate
computation.67 In the same way that we coerced the output of BC(A) to lie in S(R; X) and
called the resulting algorithm BC(A)R, we coerce the output of BCk(A) to lie in S(R; X)
and call the resulting algorithm BCk(A)R. The results: Theorem (5.1.2), Corollary (5.1.4)
for BC(A) and BC(A)R have extensions for BCk(A) and BCk(A)R.

Just above (5.1.5), Apk
(a1, . . . , am) was defined as:

BC(A)R(S((ρk, αk); X)(a1), . . . ,S((ρk, αk); X)(am))

67The k is for the kth (degree of) approximate computation.

72



This has an extension using the BCk(A)’s as does Corollary (5.1.6) and Theorem (5.1.7).
Thus one may use approximate computation to stably execute the algorithm A. The
extension to approximate computation is explained in Section (5.4).

Now some details.

5.2 Extension of A to BC(A)

Let us now carefully specify the extension of a CCB algorithm A defined on S(R; X) to
an algorithm BC(A) defined on S(BC[R,P ]; X). To be precise we require that (5.1.1) is
satisfied.

Since BC(A) is unchanged textually fromA, what we must do is specify how to interpret
A on data from S(BC[R, P ]; X). We must specify how to deal with the Initialize line
and the four types of instructions:

• “stop with Assignment of output data”

• “goto”

• “conditional goto”

• “local assignment from computation”

The Initialize line of A now assigns input data from S(BC[R, P ]; X) to the internal,
local variables, if there are any. If the Initialize line is simply:

• Initialize: ()

Then – as for the original algorithm – no internal, local variable assignment is made. In
general the Initialize line does contain internal, local variables and while the internal, lo-
cal variables of A originally are assigned values from S(R; X), the internal, local variables
of BC(A) are assigned values from S(BC[R, P ]; X).

The goto instruction is an easy case. As for the original A algorithm:

at step i: “goto step j” Local variable assignments are unchanged.
Continue at step j.

What remains to explain are the conditional goto instruction and the local assign-
ment from computation instruction and the stop instruction. Superficially, as for the
original A algorithm we are dealing with one of:

73



at step i: “stop (Y1, . . . , Yn)” Execution halts. The algorithm
outputs the sequence consisting
of the values of the Yi’s.

at step i: “goto step j if Predicate(Y1, . . . , Yn)” Local variable assignments are
unchanged.
“Predicate(Y1, . . . , Yn)” is
evaluated. If:
TRUE continue at step j.
FALSE continue at step (i + 1).

at step i: “X = Function(Y1, . . . , Yn)” Function(Y1, . . . , Yn) is evaluated.
The result is assigned to X.
Continue at step (i + 1).

The obstacle to specifying how “Predicate()” and “Function()” are evaluated on
arguments from S(BC[R,P ]; X) is that “Predicate()” and “Function()” originally have
arguments from S(R; X).

Here is the treatment of the stop instruction. As mentioned in the definition of
algorithms in section (2.1), what appears in the parentheses of the “stop” step or as
arguments to the predicate or function, if any such Yi’s appear, are internal, local variables
or elements of S(R; X). Any of the Yi’s which are internal, local variables are expected
to hold values from S(BC[R, P ]; X).68 In the stop, predicate and function case, the first
step is to coerce any arguments which are not internal, local variables – i.e. Yi’s which lie
in S(R; X) – to S(BC[R, P ]; X). Here is how. For i = 1, . . . , n set:

wi = u if Yi is an internal, local variable with value u ∈ S(BC[R, P ]; X)

wi = [Yi, 0̂] if Yi is not an internal, local variable but simply an element of S(R; X)

Now in the case of a “stop” step the execution halts and the algorithm returns
(w1, . . . , wn).

5.2.1 NOTE that the “stop” instruction and output is handled differently for BC(A)R.
Here is the description how

at step i: “stop (Y1, . . . , Yn)” Execution halts. The algorithm outputs the
sequence consisting of the values of the Yi’s.

is treated for BC(A)R. For i = 1, . . . , n set:

vi = Yi if Yi is not an internal, local variable but simply an element of S(R; X)

68As usual, if any of the internal, local variables are not assigned or any of the arguments are inappro-
priate data, the algorithm crashes.

74



If Yi is an internal, local variable, it is an output variable (5.1.3) and there may be a
discrete set SYi

⊂ S(R; X) associated with Yi. If not SYi
is simply considered to be the

empty set. For i = 1, . . . , n set:

vi = (SYi
./ u)R if Yi is an internal, local variable with value u ∈ S(BC[R,P ]; X)

At this “stop” instruction execution halts and the algorithm returns (v1, . . . , vn).

Now the handling of the “predicate” step and the “function” step for BC(A). We have
already formed (w1, . . . , wn). Consider (w1, . . . , wn) to be an element in S(BC[R, P ]; X).

Here is how to proceed with the predicate case. SPredicate-rewrite the element (w1, . . . , wn)
and evaluate predicate on:

(SPredicate ./ (w1, . . . , wn))R ∈ S(R; X)

In other words, evaluate:

Predicate((SPredicate ./ (w1, . . . , wn))R)

If (SPredicate ./ (w1, . . . , wn))R is suitable data for Predicate – i.e. lies in the domain of
definition of Predicate – then

Predicate((SPredicate ./ (w1, . . . , wn))R)

evaluates to “TRUE” or “FALSE” and the conditional goto may be carried-out. If
(SPredicate ./ (w1, . . . , wn))R does not lie in the domain of definition of Predicate then

Predicate((SPredicate ./ (w1, . . . , wn))R)

is not defined and the algorithm crashes. This finishes the specification of how to evaluate
predicates and next we show how to proceed with the function case.

Let us rename Function to ϕ. Since A is a CCB algorithm, (2.4.11), ϕ is a function
with constructive convergent bound. (4.5.10) shows how to extend ϕ to Φ defined on a
subset of S(BC[R, P ]; X). If (w1, . . . , wn) lies in A′ – the domain of definition of Φ – then
simply evaluate Φ(w1, . . . , wn) and assign the result to X. If (w1, . . . , wn) does not lie in
the domain of definition of Φ then the algorithm crashes. This completes the rigorous
definition of the extension of A to BC(A).

5.3 Stability

This section recounts how stability works. Beyond containing the technical details, the
principles which emerge here are key to an understanding of stability and to the continued

75



development in (5.4). Suppose thatA satisfies (5.1.1). Suppose that a1, . . . , am ∈ S(R; X)
is suitable input data for A. Let {ak}k be an approximation sequence in S(BC[R, P ]; X)
for a. We shall show that if A terminates normally when invoked with input data a then
there exists M where for k ≥ M the algorithm BC(A) with input data {ak}k takes exactly
the same execution path69 as the algorithm A with input data a.

Moreover, if b1, . . . , bn ∈ S(R; X) is the output data for A invoked with input data
a and b denotes (b1, . . . , bn) ∈ S(R; X) then the sequence {BC(A)(ak)}k≥M forms an
approximation sequence in S(BC[R, P ]; X) for b. This will prove (5.1.2) from which
(5.1.4), (5.1.6) and (5.1.7) follow.

Executing an algorithmA with input data a results in a series of steps being performed,
as described in (2.1). It begins with the Initialize step which is always followed by step 1.
If step 1 is a goto or conditional goto, it may happen that some other step than step 2
is performed immediately after step 1. Let EP be the ordered list or sequence – starting
with step 1 – of the steps which are performed when executing the algorithm A with input
data a. EP is simply the sequence of step numbers in the order they are performed.70

EP is a finite list when A terminates normally – i.e. after a finite number of steps. EP
always has “1” as the first element and so is never an empty list. If the algorithm runs
forever – in the terminology of Section (2.1) – then EP will be an infinite sequence of
integers. In case A crashes we treat EP as follows. Each step successfully performed is
added to the list. The step where the crash occurs is also added to the list and is followed
by a final 0 on the list.71 EP may have duplicate numbers and duplicate subsequences of
numbers. Looping structures in A would typically cause duplicates.

5.3.1 DEFINITION Execution Path: EP is the execution path of A invoked with
input data a.

For specific k the algorithm BC(A) invoked with input data ak may or may not
terminate normally. In any event, let EPk denote the execution path of BC(A) invoked
with input data ak. Our claim about execution paths becoming the same can now be
stated precisely:

5.3.2 If A invoked with input data a terminates normally, then there is an integer M
where k ≥ M ⇒ EPk = EP.

69By execution path we mean an ordered list of the steps which are executed. This will be explained
in greater detail.

70For a specific number on the list EP we can simply look at the text of the algorithm A to see what
is the actual instruction at that step number.

71Let us make a convention that in case of a “(conditional) goto” to a step number which does not exist,
the crash occurs at the location of the errant “(conditional) goto” as opposed to the missing location
of the missing step. This insures that except for a final 0 in the case of a crash, only positive numbers
appear on the list since actual step numbers are positive integers.

76



We prove our main result by proving a result which is valid when A terminates nor-
mally or runs forever, when invoked with input data a.72 We shall show that in this
case the sequence of lists EPk approach EP in the sense that bigger and bigger initial
segments coincide with the corresponding initial segment of EP . At the same time the
internal, local variables of BC(A) will be approximation sequences for the internal, local
variables of A. This will do the trick because when A terminates normally on a then EP
is finite and so when the initial segment reaches all of EP we will be done. The proof is
by induction and here is the precise inductive hypothesis:

5.3.3 At stage N in the induction we have MN where for k ≥ MN conditions A and B
are satisfied:

A. EP coincides73 with EPk up to length N .

Since A and BC(A) are textually the same, by A. the same steps or instructions in
A and BC(A) will have been performed and precisely the same internal, local variables
will have been assigned data in the performance of the first N steps of each algorithm.74

For each internal, local variable LV which is assigned data in the performance of the first
N steps of each algorithm, let LV (N ) be the value of the internal, local variable LV in
the execution of A when N steps have been performed. Or the final value of LV if A
terminated normally in fewer than N steps. Let BC(LV (N ))k be the value of the internal,
local variable LV in the execution of BC(A) when N steps have been performed. Or the
final value of LV if BC(A) terminated normally in fewer than N steps.

B. {BC(LV (N − 1 ))k}k≥MN
is an approximation sequence for LV (N − 1 ).

5.3.4 Initial Induction Invocation and Verification of the Induction Hypoth-
esis:

The induction begins with N = 1 for which M1 = 0 or wherever the approximation
sequence {ak}k for a begins. EP coincides with EPk up to length 1 because all execution
paths begin with “1”. Hence, A. is satisfied. As for B., internal, local variables will only
have been assigned data before step 1 by assignment in the Initialize step in A and BC(A).
Thus the approximation sequence requirement of B. is satisfied because {ak}k is assumed
to be an approximation sequence for a. This verifies the initial induction invocation.

Next comes the verification of the induction hypothesis. Assume that it holds true for
N and we must verify it for N + 1. This will be handled in cases. The easy or trivial

72We do not know crash behaviour possibilities particularly well.
73Two sequences coincide up to length N means that if either sequence has length less than N then

both do and they are equal. Otherwise the first N entries in the sequences are the same.
74I.e. the steps in the algorithm which correspond to the first N entries of EP or equivalently EPk.

77



case is where A or BC(A) terminated normally in fewer than N steps. In this case by
A. if one terminated in fewer than N steps then both terminated at the same point and
nothing new happens with the internal, local variables. I.e. LV (N ) = LV (N − 1 ) and
BC(LV (N ))k = BC(LV (N − 1 ))k for k ≥ MN . Hence, we may let MN+1 equal MN and
the induction hypothesis has been verified.

The real work now begins, where both A and BC(A) did reach an N th instruction.
This breaks into cases according to whether the N th instruction is:

• “stop with Assignment of output data”

• “goto”

• “conditional goto”

• “local assignment from computation”

CONDITIONAL GOTO: We are assuming that i is the N th entry in the list EP
and that the ith step in A is:

step i: “goto step j if Predicate(X1, . . . , Xn)”

As described in Section (2.1), internal, local variable assignments are unchanged.
Hence B. will be satisfied automatically and the problem is to satisfy A.. Since for
k ≥ MN , EP coincides with EPk up to length N , we must show that the N + 1st entries
of the two are the same. Or rather that there is MN+1 ≥ MN where for k ≥ MN+1 the
N + 1st entries of the two are the same. Let LV be the conglomeration of the internal,
local variables {X1, . . . , Xn}.75 We think of LV as standing for (X1, . . . , Xn). Since con-
vergence is component-wise, convergence for LV can be expressed in terms of convergence
for the Xi’s and vice-versa. For A the N th instruction to be performed is:

step i: “goto step j if Predicate(LV (N − 1 ))”

Hence the N + 1st entry in EP is j if Predicate(LV ) is “TRUE” and is i + 1 if
Predicate(LV ) is “FALSE”. Similarly for BC(A) invoked with the input data ak, the N th

instruction to be performed is:

step i: “goto step j if Predicate(BC(LV (N − 1 ))k)”

Hence the N + 1st entry in EPk is j if Predicate(BC(LV (N − 1 ))k) is “TRUE” and
is i + 1 if Predicate(BC(LV (N − 1 ))k) is “FALSE”.

Thus we have to produce MN+1 where:

5.3.5 k ≥ MN+1 ⇒ Predicate(LV (N − 1 )) = Predicate(BC(LV (N − 1 ))k)

75We could work with the Xi’s individually but this simplifies notation.

78



For this we must utilize the fact that by the induction hypothesis
{BC(LV (N − 1 ))k}k≥MN

is an approximation sequence for LV (N − 1 ).

As described in the previous section, in the execution of BC(A), Predicate is evaluated
at BC(LV (N − 1 ))k, by doing SPredicate rewriting of BC(LV (N − 1 ))k to form V (N−1)k.
and then Predicate is evaluated at (V (N − 1)k)R which is an element of S(R; X). By
hypothesis, {BC(LV (N − 1 ))k}k≥MN

is an approximation sequence for LV (N − 1 ). By

(4.5.9), {BC(LV (N − 1 ))k}k≥MN
converges to

⇀

[ LV (N − 1 ), 0̂
↼

] and the convergence
is finite convergence if LV (N − 1 ) is in SPredicate. Hence, {(BC(LV (N − 1 ))k)R}k≥MN

converges to LV (N − 1 ) and the convergence is finite convergence if LV (N − 1 ) is in
SPredicate.

By hypothesis the domain of Predicate – call it A – equals SPredicate ∪ Ω(Predicate).
Thus LV (N − 1 ) must lie in SPredicate or Ω(Predicate) or both. If LV (N − 1 ) ∈
Ω(Predicate) then Predicate is continuous at LV (N − 1 ). Also, since Ω(Predicate)
is an open set and {(BC(LV (N − 1 ))k)R}k≥MN

converges to LV (N − 1 ), there is an
integer M ′ ≥ MN where k ≥ M ′ ⇒ (BC(LV (N − 1 ))k)R ∈ Ω(Predicate). Now
{(BC(LV (N − 1 ))k)R}k≥M ′ is a sequence of elements of A converging to LV (N − 1 ).
Since Predicate is continuous at LV (N − 1 ) (4.6.5) there is M ′′ ≥ M ′ where k ≥ M ′′ ⇒
Predicate((BC(LV (N − 1 ))k)R) = Predicate(LV (N − 1 )). Hence, letting MN+1 = M ′′,
(5.3.5) is satisfied. If LV (N − 1 ) ∈ SPredicate then by (4.5.9), the convergence of

{BC(LV (N − 1 ))k}k≥MN
to

⇀

[ LV (N − 1 ), 0̂
↼

] is finite. Thus there is an M ′ ≥ MN

where k ≥ M ′ ⇒:
BC(LV (N − 1 ))k)R) = LV (N − 1 )

and so k ≥ M ′ implies that

Predicate((BC(LV (N − 1 ))k)R) = Predicate(LV (N − 1 ))

Now let MN+1 be M ′. Then (5.3.5) is satisfied. This completes the case for CONDI-
TIONAL GOTO:.

STOP: We are assuming that i is the N th entry in the list EP and that the ith step
in A is:

step i: “stop (X1, . . . , Xn)”

This is an easy case. For A the N th instruction to be performed is:

step i: “stop (LV (N − 1 ))”

As described in Section (2.1), the execution of A halts and LV (N − 1 ) is assigned as
the output of A. Hence EP ends with the N th and last entry i and has no N + 1st entry.

Similarly for BC(A) invoked with the input data ak, the N th instruction to be per-
formed is:

79



step i: “stop (BC(LV (N − 1 ))k)”

The execution of BC(A) halts and EPk ends with the N th and last entry i and has
no N + 1st entry. Thus the inductive step for A. is satisfied. As described in Section
(2.1), internal, local variable assignments are unchanged at a stop step, and so B. will be
satisfied automatically, simply letting MN+1 = MN .

GOTO: We are assuming that i is the N th entry in the list EP and that the ith step
in A is:

step i: “goto step j”

This is another easy case. In both A and BC(A), the N th instruction is the same
“goto step j” instruction. Hence the N + 1st entries of both EP and EPk are the same:
j. Thus A. is satisfied for N + 1. As described in Section (2.1), internal, local variable
assignments are unchanged at a goto step, and so B. will be satisfied automatically, simply
letting MN+1 = MN .

LOCAL ASSIGNMENT FROM COMPUTATION: We are assuming that i is
the N th entry in the list EP and that the ith step in A is:

step i: “X = Function(Y1, . . . , Yn)”

First we verify B. for N + 1. Suppose that Function is ϕ and ϕ : A → C where
A,C ⊆ S(R; X). Since A is a CCB algorithm, ϕ is a structured function with constructive
convergent bound, (4.3.8). Also by assumption (5.1.1), functions are defined on open sets.
Thus A is an open set in S(R; X).

As described in Section (2.1), BC(A) performs the N th instruction by setting:

X := ϕ(LV (N − 1))

where LV (N−1) ∈ A and X ∈ C. On the other hand, BC(A) utilizes Φ : A′ → C ′, the
extension of ϕ to S(BC[R, P ]; X), (4.5.10). That is, BC(A) performs the N th instruction
by setting:

X := Φ(BC(LV (N − 1))k)

For both A and BC(A), X is the only internal, local variable whose value is changed76

at the N th step. Hence for all internal, local variables, with the possible exception of X,
B. will be satisfied automatically by simply letting MN+1 = MN . Thus we only have to
show that B. is satisfied by X for suitable MN+1 which is greater than or equal to MN .

To clarify what we are dealing with, we let X(N) stand for the value of the internal,
local variable X after this step N in the execution of A with input data a. We let
BC(X(N))k stand for the value of the internal, local variable X after this step N in the

76This may be where X is first assigned a value. “Changed” is meant to include this possible meaning.

80



execution of BC(A) with input data {ak}k. We must produce MN+1 ≥ MN where

{BC(X(N))k}k≥MN+1
is an approximation sequence for X(N)

Suppose that ω :
⇀

[ A,Pm
↼

]→ P n is a continuous convergent bound for ϕ.
Φ(BC(LV (N − 1))k) is defined as:

⇀

[ ϕ(BC(LV (N − 1))kR), ω(BC(LV (N − 1))k)
↼

]

By assumption

{BC(LV (N − 1 ))k}k≥MN
is an approximation sequence for LV (N − 1 )

This implies that {(BC(LV (N − 1 ))k)R}k≥MN
converges to LV (N − 1 ). Since

LV (N − 1 ) ∈ A an open set, there is M ′ ≥ MN where k ≥ M ′ ⇒ (BC(LV (N − 1 ))k)R ∈
A. Hence, k ≥ M ′ ⇒ (BC(LV (N − 1 ))k) ∈ A′ by (4.5.12). Thus we may apply (4.5.13)
to conclude that

{Φ(BC(LV (N − 1))k)}k≥M ′

is an approximation sequence for ϕ(LV (N − 1 )). Since BC(X(N))k = Φ(BC(LV (N−1))k,
by letting MN+1 = M ′ we have verified B..

Finally, if k ≥ M ′ BC(A) continues at “step (i + 1)”, since (BC(LV (N − 1 ))k) ∈ A′.
Hence “i + 1” is the N + 1st entry in both EP and EPk. I.e. A. is satisfied for N + 1.
This completes the case of LOCAL ASSIGNMENT FROM COMPUTATION:.

5.4 Approximate Arithmetic and More General Functions

This section discusses two matters. The first is how inexact – but arbitrarily precise –
computation may be used and still obtain the analogous results to (5.1.2), (5.1.4), (5.1.6)
and (5.1.7). The second matter is how the restriction:

• The domain of each function in each “local assignment from computation” step of
A is an open set of S(R; X).

in (5.1.1) may be relaxed. The style of presentation is detailed expository form.

We begin by defining the notion of approximate computation. For examples and
motivation, consider the rounding-off in previous examples. The idea behind approximate
computation is to only perform computation as far as needed to obtain the rounded answer.
Rounded arithmetic is limited in precision. The use of rounded arithmetic to approximate
exact computation is accomplished by considering successive rounded computations with

81



increasing precision. The same must be done with general approximate computation.
That is why approximate computation takes the form of a collection or sequence of maps
which converge (pointwise) to a given map or computation.

As in (3.1.20) and (4.2.6) where Approx2′ and Approx2′′ are increasingly restrictive
alternatives to Approx2, we introduce Convergence′ and Convergence′′ as increas-
ingly restrictive alternatives to Convergence in:

5.4.1 DEFINITION Approximate Computation: Let A ⊆ Rm, C ⊆ Rn and
ϕ : A → C. A pair of sequences of maps {ϕk}k and {λk}k where each ϕk maps A
to C and each λk maps A to P n is an approximate computation for ϕ if Bound and
Convergence are satisfied. The pair of sequences of maps is a continuous approximate
computation for ϕ if Bound and Convergence′ are satisfied. The pair of sequences of
maps is a locally compact approximate computation for ϕ if Bound and Convergence′′

are satisfied.

Bound: For a ∈ A: ν(ϕ(a)− ϕk(a)) ≤ λk(a).

Convergence: For each a ∈ A, λk(a) → 0̂ as k →∞
Convergence′: The sequence {λk}k has the following restricted form of convergence:

For Cauchy sequences {ak}k of elements of A, the sequence {λk(ak)}k has the
convergence:

λk(ak) → 0̂ (k →∞)

Convergence′′: The sequence {λk}k has the following restricted form of convergence:
For bounded sequences {ak}k of elements of A, the sequence {λk(ak)}k has the
convergence:

λk(ak) → 0̂ (k →∞)

ϕk is called the kth approximate computation for ϕ.

Notice that under approximate computation, {ϕk}k converges point-wise to ϕ. Un-
der continuous approximate computation, the convergence of {ϕk}k to ϕ is continuous
convergence, [3]. And under locally compact approximate computation, the convergence
of {ϕk}k to ϕ is uniform on compact neighborhoods of points. I.e. the convergence is
uniform, locally compactly. Just plain approximate computation is not strong enough to
insure that the conclusion holds for the proposition (5.4.8), which corresponds to (4.5.13).
Such failure would be fatal to the correctness of certain stability theorems if they relied
upon just plain approximate computation. Hence, one of the more restrictive conditions
– continuous approximate computation or locally compact approximate computation – will
be necessary.

82



Convergent approximations yield approximate computations and are an important
means in which approximate computations arise. The construction follows. With this
construction continuous convergent approximations yield continuous approximate compu-
tations by (4.6.4). Also, with this construction locally compact convergent approximations
yield locally compact approximate computations by (4.3.1).

5.4.2 EXAMPLE Approximate Computation from Convergent Approxima-
tion: Suppose that ϕ : A → C and that C has the convergent approximation: {ρk}k,
{αk}k, where each ρk : C → C and αk : C → P n. Set ϕk ≡ ρk ◦ ϕ and λk ≡ αk ◦ ϕ.
Then{ϕk}k and {λk}k is an approximate computation for ϕ.

Apk
is defined at (5.1.5). Let us massage the definition of Apk

to also include approx-
imate computation. Apk

was obtained from A by applying BC(A)R to the kth element77

of an approximation sequence obtained from the original input to A. To introduce ap-
proximate computation we must say what it means for a function on S(R; X) to have an
approximate computation. In fact, this is only defined for structured functions.

5.4.3 DEFINITION Functions on S(R; X) with Approximate Computation:
Let S, T ⊆ S(R; X). A structured function ϕ : S → T is said to have an approximate

computation if for each z ∈ ∗S the function κϕz : κSz → κTϕ(z) has an approximate
computation {κϕzk}k.

Now suppose that the algorithm A satisfies (5.1.1) and the functions appearing in
“local assignment from computation” step of A have an approximate computation. More
formally:

5.4.4 HYPOTHESES II:

• A is a continuous CCB algorithm, (4.3.9).

• The domain of the function in each “local assignment from computation” step of A
is an open set of S(R; X).

• For the predicate Predicate in each “conditional goto” step of A there is a discrete
set SPredicate where the domain of Predicate equals SPredicate ∪ Ω(Predicate).

• For the function Function in each “local assignment from computation” step of A,
Function has a continuous approximate computation.

77The approximation sequence is obtained from {pk}k ⊂ P using (3.1.12) and (4.5.7) as described
earlier.

83



The approximate computations for functions in A are ultimately used to massage the
definition of BC(A). First we must massage the definition of the extension of maps with
convergent bounds at (4.2.2).

5.4.5 DEFINITION BC Extension of Functions with Convergent Bounds
and Approximate Computation: Let A ⊆ Rm, C ⊆ Rn and ϕ : A → C. Suppose

that ω :
⇀

[ A,Pm
↼

]→ P n is a convergent bound for ϕ and suppose that {ϕk}k and {λk}k

is an approximate computation for ϕ. All together, (ϕ, ω, {ϕk}k, {λk}k) gives a sequence

of maps {ϕωk}k from
⇀

[ A,Pm
↼

] to
⇀

[ C, P n
↼

] . ϕωk is defined:

ϕωk(t) ≡
⇀

[ ϕk(tR), ω(t) +̂ λk(tR)
↼

]

for t ∈
⇀

[ A,Pm
↼

] . Equivalently, if t =
⇀

[ a, p
↼

] then ϕωk(t) =
⇀

[ ϕk(a), ω(
⇀

[ a, p
↼

]

) +̂ λk(a)
↼

] .

We use this to massage the construction of the extension of maps on S(R; X) with
convergent bounds. At (4.5.10) one began with A,C ⊆ S(R; X) and ϕ : A → C
a structured function with constructive convergent bound. The construction yielded
A′, C ′ ⊆ S(BC[R,P ]; X) and a structured map Φ : A′ → C ′.

5.4.6 CONSTRUCTION Extension of Maps with Convergent Bounds and
Approximate Computation to S(BC[R, P ]; X): Unlike (4.5.10) this time we begin
with A,C ⊆ S(R; X) and ϕ : A → C a structured function with constructive convergent
bound and approximate computation. Follow (4.5.10) except that the extension of the map

κϕz to a map κϕzωκϕz
from

⇀

[ κAz, P
m

↼

] to
⇀

[ κCϕ(z), P
n

↼

] is replaced by κϕzωκϕz k
where

κϕzωκϕz k
is defined at (5.4.5). The A′ and C ′ one constructs are the same as before. The

map from A′ to C ′ one constructs is now called Φk since it utilizes the kth approximate
computation.

One may show that for a′ ∈ A′ ⊆ S(BC[R, P ]; X):

5.4.7 {Φk(a
′)R}k converges to {Φ(a′)R}k

Using approximate computation, one may also generalize (4.5.13) to the following
proposition. While it is easy to prove the proposition along the lines of the proof of
(4.5.13), it is at the heart of why approximate computation works.

5.4.8 PROPOSITION Approximation Sequences Mapping to Approxima-
tion Sequences Using Approximate Computation: Let A,C ⊆ S(R; X). Let

84



ϕ : A → C be a structured function with constructive continuous convergent bound and
continuous approximate computation. Let Φk : A′ → C ′ be the structured map just de-
scribed in (5.4.6). Suppose that {E`}` is a sequence of elements of BC which is an ap-
proximation sequence for a ∈ S(R; X). Suppose that there is an integer M where ` ≥ M
⇒ E` ∈ A′.

Then the sequence {Φk(Ek)}k≥M is an approximation sequence for the element ϕ(a)
of C.

In applications one uses Φk to replace Φ in the construction of BC(A). More specifi-
cally, one replaces Φ by Φk in the description how to handle the step:

at step i: “X = Function(Y1, . . . , Yn)” Function(Y1, . . . , Yn) is evaluated.
The result is assigned to X.
Continue at step (i + 1).

in Section (5.2). Now the construction depends upon the specific k and we call the
resulting algorithm BCk(A).

(5.1.2) and (5.1.4) have generalizations to BCk(A). We are more interested in the
generalization of (5.1.6) and (5.1.7). Apk

is defined at (5.1.5). We use BCk(A) to generalize
this to:

5.4.9 DEFINITION Ãpk: Suppose that A satisfies (5.4.4) and {pk}k is a sequence
of elements of P which converges to 0̂. If a1, . . . , am ∈ S(R; X) is input data for A then:

{S((ρk, αk); X)(a1)}k, . . . , {S((ρk, αk); X)(am)}k

are strict approximation sequences for a1, . . . , am.78 Let Ãpk
(a1, . . . , am) denote:

BCk(A)R(S((ρk, αk); X)(a1), . . . ,S((ρk, αk); X)(am))

Now the generalization of (5.1.6):

5.4.10 PROPOSITION Ãpk-Stability: Suppose that A satisfies (5.4.4) and
a1, . . . , am ∈ S(R; X) is input data for A. Suppose that the output of A(a1, . . . , am)
is b1, . . . , bn ∈ S(R; X). Then there is N where for k ≥ N the output of Ãpk

(a1, . . . , am)
is b1k, . . . , bnk ∈ S(R; X). For each bj, the sequence {bjk}k≥N converges to bj. If bj comes
from an output variable OV then the sequence {bjk}k≥N , SOV -converges to bj.

78See (4.5.7) for the definition of S((ρk, αk); X)(ai). See just above (5.1.5) and the end of section (5.1)
for how this construction has appeared before.

85



This shows that the output of algorithms based upon exact computation may be
approximated by a variation on the algorithm which utilizes approximate computation.

The low-level computation involved in Ãpk
is approximate computation. The impor-

tance of the previous result and the next result – which is the approximate computation
analog to (5.1.7) – is that algorithms based on exact computation can be stabilized with
approximate computation.

5.4.11 THEOREM A-Stabilization with Approximate Computation: Sup-
pose that A satisfies (5.4.4). Suppose that pi → 0̂ slowly as defined in the footnote to
(5.1.7). Write Ãi in place of Ãpi

. Suppose that a1, . . . , am ∈ S(R; X) is input data for A.
Assume that for each aj there is a sequence a′jk

of elements of S(R; X) which converges
to aj.

A. There is N which depends on a1, . . . , am where for i ≥ N there is an inte-
ger Mi and for j ≥ Mi Ãi(a1j, . . . , amj) terminates normally. Moreover, the sequence

{Ãi(a1j, . . . , amj)}j≥Mi
converges.

Let b1i, . . . , bni denote the limit: limj≥Mi
Ãi(a1j, . . . , amj).

B. The sequence {b1i, . . . , bni}i≥N converges to A(a1, . . . , am).

As before this gives a stabilization result, but with approximate computation this
time:

5.4.12 limi(limjÃi(a1j, . . . , amj)) = A(a1, . . . , am)

This finishes the handling of approximate computation. We end by outlining how to
handle functions with certain kinds of discontinuities. An example of such a function is the
Integer Part function, i.e. the function which returns the integer part of a real number.
Many algorithms use Integer Part and similar functions. Integer Part is continuous at
all real numbers except the integers, a discrete set.

In Section (5.2), S-rewriting only appeared in the treatment of steps of the form:

at step i: “goto step j if Predicate(X1, . . . , Xn)” Local variable assignments are
unchanged.
“Predicate(X1, . . . , Xn)” is
evaluated. If:
TRUE continue at step j.
FALSE continue at step (i + 1).

In particular, no S-rewriting appeared in the treatment of steps of the form:

86



at step i: “X = Function(Y1, . . . , Yn)” Function(Y1, . . . , Yn) is evaluated.
The result is assigned to X.
Continue at step (i + 1).

By introducing or permitting S-rewriting at Function evaluation steps, we may handle
more general functions. For this we must introduce somewhat different and more general
hypothesis from HYPOTHESES (5.1.1):

5.4.13 HYPOTHESES III:

• A is a structured algorithm, (2.3.1).

• For the function Function in each “local assignment from computation” step of
A, there is a discrete set SFunction and an open set OFunction where the domain of
Function equals SFunction ∪ OFunction and Function has a constructive continuous
convergent bound on the set OFunction.

• For the predicate Predicate in each “conditional goto” step of A there is a discrete
set SPredicate where the domain of Predicate equals SPredicate ∪ Ω(Predicate).

Notice, this allows more general functions than CCB functions. (5.4.13) allows func-
tions – like Integer Part – which fail to have a constructive convergent bound on a
discrete set. When (5.4.13) holds we must change the treatment of steps of the form:

at step i: “X = Function(Y1, . . . , Yn)” Function(Y1, . . . , Yn) is evaluated.
The result is assigned to X.
Continue at step (i + 1).

in Section (5.2). Follow the description in Section (5.2) up to the point of forming
(w1, . . . , wn) which is considered to be an element of S(BC[R,P ]; X). As in Section (5.2)
rename Function to ϕ. Next Sϕ-rewrite (w1, . . . , wn), i.e. form (Sϕ ./ (w1, . . . , wn)). If

Sϕ ./ causes a change in (w1, . . . , wn) then (Sϕ ./ (w1, . . . , wn)) =
⇀

[ s, 0̂
↼

] where s ∈ Sϕ.

In this case execute the function step by assigning X the value:
⇀

[ ϕ(s), 0̂
↼

] . This is
possible since Sϕ lies in the domain of definition of ϕ. If Sϕ-rewriting causes no change in
(w1, . . . , wn) then consider if (w1, . . . , wn) lies in A′ the domain of definition of Φ described
in (4.5.10). In this case assign X the value Φ(w1, . . . , wn). If (w1, . . . , wn) does not lie in
A′ then the algorithm crashes.

With this variant on the definition of BC(A), and similarly for BC(A)R, the main
results in section (5.1) still hold. The two extensions mentioned in this section may be
combined. In this case algorithms are expected to satisfy:

87



5.4.14 HYPOTHESES IV:

• A is a structured algorithm, (2.3.1).

• For the function Function in each “local assignment from computation” step of
A, there is a discrete set SFunction and an open set OFunction where the domain of
Function equals SFunction ∪ OFunction and Function has a constructive continuous
convergent bound and continuous approximate computation on the set OFunction.

• For the predicate Predicate in each “conditional goto” step of A there is a discrete
set SPredicate where the domain of Predicate equals SPredicate ∪ Ω(Predicate).

5.5 Concluding Remarks

Stabilization techniques for algebraic algorithms and CCB algorithms have been described.
Such algorithms are structured algorithms. This section is about the problem of applying
our stabilization techniques to a given algorithm which might not originally be presented
in a suitable form for stabilization. One must come up with an alternative description of
the algorithm where it a structured algorithm. Furthermore, one must alter the algorithm
so that functions and predicates have empty or discrete ∆ sets. This process is demon-
strated by our treatment, 2.6.5, of the Buchberger algorithm. The Buchberger algorithm
involved finite sets and set operations. Although such operations are non-structured per
se, frequently one can structure them. The initial concluding remarks are about aspects
of structuring set operations on finite sets. Then we close with several additional remarks
about stabilizing algorithms which might not originally be presented in suitable form for
stabilization.

Let us start with an example. Let R′ be a set. One often uses finite subsets of R′

as a data structure. However, throughout this paper we have been working on S(R; X)
for stabilization. Hence one should introduce finite sequences of elements from a formal
copy R of R′ instead of finite sets of elements from R′. Of course one should be careful
with the fact that sequences are different from sets in treating multiplicities and orderings
of elements. For example, in the natural numbers, {1, 2} = {2, 1} = {1, 2, 2} but (1, 2),
(2, 1), and (1, 2, 2) are all distinct. Let L be the set of finite sequences of elements from
R. Note that L = S(R; { }). Corresponding to union on sets, one should consider
the union-like operation UNION: L × L → L. Namely for (x1, . . . , xr), (y1, . . . , ys) ∈
L, UNION((x1, . . . , xr), (y1, . . . , ys)) = (z1, . . . , zt) where {x1, . . . , xr} ∪ {y1, . . . , ys} =
{z1, . . . , zt} and z1 = x1, . . . , zr = xr, and if any yi’s do not occur among the xi’s then
zr+1 is the first of the yi’s which do not occur, zr+2 is the second of the yi’s which do not
occur, etc. UNION is not structured. For a, b, c, d ∈ R, with a and b distinct and c and
d distinct, UNION((a, b), (c, d)) equals (a, b), (a, b, c), (a, b, d) or (a, b, c, d) depending
which of a, b, c, d are distinct. Hence the structure of UNION((a, b), (c, d)) depends on

88



the specific coefficients a, b, c, d and not just the structure of ((a, b), (c, d)). Similarly
INTERSECTION, SETMINUS, SUBSET, and SETEQUAL79 are not structured.
However, they all commonly occur in algorithms. In this case they can be structured.
Structuring the MEMBERSHIP80 function is fundamental to structuring these other
set functions. MEMBERSHIP can be described as a structured algorithm as follows:

MEMBERSHIP:

Initialize: (x, Y )
step 1: Z = Y
step 2: a = π1(Z)
step 3: if ARE EQUAL(a, x) goto step 7
step 4: Z = π>1(Z)
step 5: if IS EMPTY (Z) goto step 8
step 6: goto step 2
step 7: stop (1)
step 8: stop (0)

where π1 is the projection onto the first component and π>1 is (the list of the result of) the
projection onto the components beyond 1. The functions in this algorithm are structured
functions by (2.4.5,e).

Using the MEMBERSHIP algorithm as a subalgorithm or subroutine81, UNION
can be described as follows.

UNION:

Initialize: (X,Y )
step 1: Z = X
step 2: b = π1(Y )
step 3: M = MEMBERSHIP(b, Z)
step 4: if ARE EQUAL(M, 1) goto step 6
step 5: Z = G(Z, b)
step 6: Y = π>1(Y )
step 7: if IS EMPTY (Y ) goto step 9
step 8: goto step 2
step 9: stop (Z)

79Like UNION, these functions are all defined on L. They correspond to intersection, setminus, subset,
and setequal on sets, respectively. The precise definitions are left to the reader.

80Given d ∈ R and (d1, . . . , dn) ∈ L, MEMBERSHIP(d, (d1, . . . , dn)) is “1” if d ∈ {d1, . . . , dn} and
“0” otherwise.

81Of course one could simply insert the body itself of the MEMBERSHIP algorithm into the algo-
rithm for UNION.

89



Here G is the function defined at (2.4.6,G). G is a structured function by (2.4.5,g).

INTERSECTION, SETMINUS, SUBSET, and SETEQUAL can also be de-
scribed as structured algorithms in a similar way. The details are left to the reader.

Once one has obtained a structured algorithm, the next problem for the purpose
of stabilization is to transform functions and predicates with non-discrete ∆ sets into
structured functions and predicates with empty or discrete ∆ sets. This is not always
possible. In the remark after 4.6.20, we discussed how some predicates can be transformed
suitably.

Here is another example, the equality test in R. We call this ARE EQUAL as in the
MEMBERSHIP algorithm. This predicate has domain equal to R × R. It is easy to
see that ∆(ARE EQUAL) = {(r, r) | r ∈ R}. So if (a copy of) R is not discrete, the
∆ set is not discrete. In this case, as in the discussion after 4.6.20, one can decompose
ARE EQUAL(a, x) into the structured function u = a−x and the predicate IS ZERO(u)
which has the discrete ∆ set {0}.

Finally, consider ARE EQUAL in the UNION algorithm. The the domain is just
{0, 1} × {1}, a discrete set. So the ∆ set of ARE EQUAL in the UNION algorithm is
discrete.

5.6 Further Examples

The body of the paper contains many illustrative examples. This appendix has several
additional examples with a different purpose. The examples here illustrate limitations or
technical details relevant to the theory in the body of the paper.

We begin with a counterexample. In the introduction we mentioned that spurious
convergence may cause anomalous behavior regarding a possible converse to (5.1.2). Here
is the example. We are considering a converse to Theorem (5.1.2) in the following sense.
Assume that for each ai ∈ S(R; X) there is an approximation sequence {a′ik}k of elements
of S(BC[R, P ]; X). If A(a1, . . . , am) does not terminate normally, then is there an N
where for k ≥ N BC(A)(a′1k, . . . , a

′
mk) does not terminate normally? In general the

answer is “No”. A bad convergent bound prevents the converse. In fact we do not
have a counterexample for the usual good convergent bounds which define the basic BC-
Arithmetic, (4.1.1).

5.6.1 EXAMPLE Counterexample to the Converse:

Consider the following algorithm A:

90



Initialize: (X)
step 1: Y = X
step 2: if Y = 0 goto step 5
step 3: Y = Y ·X
step 4: goto step 2
step 5: stop (X)

Suppose that R = R and we use ABSOLUTE VALUE, (3.1.6). Let X = 1/3 and
consider the approximation sequence {[1/3, 1/(3 + k)]}k for 1/3. Obviously A(1/3) does
not terminate normally.82 For multiplication let us define a new83 convergent bound ω̃×
as follows:

ω̃×([r1, ε1], [r2, ε2]) = max(ε1, ε2, ω×([r1, ε1], [r2, ε2])

where ω× is the usual convergent bound for multiplication. I.e. ω×([r1, ε1], [r2, ε2]) =
|r1|ε2 + ε1ε2 + ε1|r2|.

Note that ω̃× satisfies the Bound and Convergence conditions of convergent bounds,
(4.2.1). Moreover, it is easy to check that with the new convergent bound ω̃× we have
[1/3, 1/(3 + k)]n = [1/3n, 1/(3 + k)]. I.e. the resulting error terms do not depend on n.
For all k, there exists n with 1/3n ≤ 1/(3+k) so that by {0}-Rewriting, [1/3n, 1/(3+k)] is
rewritten to [0, 0]. This leads to step 5, i.e. stop. Hence for all k, BC(A)([1/3, 1/(3+k)])
does terminate normally.

5.6.2 EXAMPLE Bad Convergence: This example illustrates bad convergence of
an approximate computation. More specifically, an approximate computation which is not
a continuous approximate computation may not converge when applied to a sequence of
elements. Suppose {ρk, αk}k is an approximate computation and let {ai}i be a sequence
which converges to a ∈ R. This example shows that {ρk(ak)} need not converge.

Let R be the real numbers and let ρk(a) be defined as a+1/(k · a2) for non-zero a. Let
αk(a) be defined as a + 1/(k · a3) for non-zero a. When a is zero both ρk(a) and αk(a)
are zero. Finally, let {ai}i be the sequence {1/i}i. Then of course: ai → 0. But ρi(ai) =
i + 1/i so that: ρi(ai) →∞.

Acknowledgement

This research was supported in part by the United States Army Research Office through
the Army Center of Excellence for Symbolic Methods in Algorithmic Mathematics (AC-

82Also, it is easy to check that in the usual BC-Arithmetic (4.1.1), for k large enough,
BC(A)([1/3, 1/(3 + k)]) does not terminate normally.

83A looser bound than ω×.

91



SyAM), Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-
0027 and the National Security Agency under contract MDA 904-95-H-1035. Both authors
wish to express their gratitude to NTT (Nippon Telegraph and Telephone Corporation)
Communication Science Laboratories for their support and encouragement of this project.

References

[1] Alefeld, G. and Herzberger, J., Introduction to Interval Computations, Computer
Science and Applied Mathematics, Academic Press (1983).

[2] Buchberger, B., Gröbner Bases: An Algorithmic Method in Polynomial Ideal The-
ory, Chapter 6 in Multidimensional Systems Theory (N. K. Bose ed.), D. Reidel
Publishing Company (1985), 184-232.

[3] Carathéodory C., Theory of Functions of a Complex Variable, Vol. I, Chelsea Pub-
lishing Co. (1958).

[4] Hua, L. K., Introduction to Number Theory, Springer-Verlag (1982).

[5] Lang, S., Algebra, Addison-Wesley (1993).

[6] Shirayanagi, K., An Algorithm to Compute Floating Point Gröbner Bases, Mathe-
matical Computation with Maple V: Ideas and Applications (Ed. T. Lee), Birkhäuser
(1993), 95-106.

[7] Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Texts in Applied
Mathematics 12, Springer-Verlag (1993).

[8] Winkler, F., A p-adic Approach to the Computation of Gröbner Bases, Journal of
Symbolic Computation 6 2&3 (1988), 287-304.

92


