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Proper coloring

- G=(V(G),E(G)): simple graphs

Definition
A function f : V(G) — N is called a proper coloring if
f(u) # f(v) for all {u,v} € E(G).

Definition (Graph homomorphism)

f:V(G) — V(H) is a homomorphism if for any
{x.y} € E(G), {f(x),f(y)} € E(H).

Proper coloring of G
<
Graph homomorphism from G to the complete graph



Chromatic polynomial

- Hom(G, H): the set of graph homomorphisms from G to
H.

- K,: the complete graph with n vertices.

Definition
The chromatic polynomial of G is

X(G, n) = tHom(G, K,,).

Example
Let T be a tree with m vertices. Then x(T,n) = n(n—1)™"".



Chromatic symmetric function

- Ky: the complete graph whose vertex set is the set of
natural numbers.

Definition (Stanley (1995))

The chromatic symmetric function of G is

Xi(G) =X (G,x) = > ] %ot

p€Hom(G,Ky) veVg

Remark
1" :=(1,---,1,0,---). Then,
——
X (G,1") = > 1=4Hom(G,K,) = x(G,n).

p€Hom(G,Ky)



Example of chromatic symmetric function

Example (Stanley (1995))

Xk, (G1) = 4x156 x5 + dxP x5 x3 + 4xt x5
+ 24x1x2x3X4 +

3
Figure: Graphs G; and Ky

X(G1,3) = Xy, (G1,1%) =4+ 4 +4 =12



Chromatic symmetric function
Theorem (Power sum expansion)
» G=(V(G),E(G)): asimple graph
> |V(G)| = n.
» S: any subset of E(G).

Define \(S) the partition of n whose parts are equal to the
vertex sizes of the connected components of the spanning
subgraph of G with edge set S. Then,

Xk (G) = Z(—l)lslpx(S)

SCE

Conjecture (Stanley (1995))

If T, and T, are non-isomorphic trees then

XKN(TI) # XKN(T2)‘



Chromatic symmetric function

However, Xk, (®) is not a complete invariant for graphs.

Example (Stanley (1995))

G; and Gy are non-isomorphic but

XKN(Gl) = XKN(G2>

>~ P

Figure: Graphs G; and G,



k-fold proper coloring
- G=(V(G),E(G)): a simple graph
Q) =Nl =k
Definition
A function f : V(G) — (}) is called a k-fold proper
coloring if f(u) N f(v) = () for every pair of adjacent vertices.

Example

{3,5} {3,4}

{4,6} {5,6}

Figure: 2-fold proper coloring

k-fold proper coloring
<= graph homomorphism from G to the Kneser graph



Kneser graph

Definition

The Kneser graph Ky« is the
graph whose vertex set is (IE)
and for any A, B € (IE) A~ B
if and only if AN B = 0.

Remark

Kx,1 is the complete graph
whose vertex set is the set of
natural numbers.




Kneser chromatic function

Definition
- Ky,k: the Kneser graph
- x, (u € (})): indeterminates

For any graph G, the Kneser-chromatic function Xy, ,(G)
is defined as follows:

Xio(G) =X, (G.x) = > ] *ew

w€Hom(G,Ky k) vEVe

» Xk, (®) = Xky(®) is the chromatic symmetric function.

» Xiy.ir (G) is a stronger invariant than Xy, , (e):
If XKN,kJrl(G) = XKN,k+1(H)' then XKN,k(G) = XKN,k('LI)'



Example of Kneser chromatic function
{3,5} {3,4}

1,2

{4,6} {5,6}

Figure: Graphs G; and H' — Ky 2

Xiy,2 (61) = > IT Xo(v)

wEHom(Gy,Ky, 2) vEV(G1)
= dxq12y 505,43 705,6)
+ 24X{1,2}X{3,4}X{5,6}X%7,8} + SX%I,Q}X{3,4}X{5,6}X{3,7} + 8X(1,2}X{3,4}X{5,6} X{3,5} X{4,6}
+ 48x{1,23X(3,43 X{5,6} X{1,93¥{7,8} + 8X{1,21X{3,4}X{5,6}X{3,7} X{4,6} T 16X{1,2}X(3,4}X{5,6}
+ 16x{1,23X(3,43 X{5,6} X{1,8}X{3,7} + 120%(1,2}X(3,4}X{5,6} X{7,8} X{9,10} T "~

By 8x{1,2)X(3,41X(5,6)X{3,5} X{4,6}, there are 8 homomorphisms
from G; to H'.



Example of Kneser chromatic function

{3,5} {3,4}

1,2

{4,6} {5,6}

Figure: Graphs Gy and H' — Ky 2

Xy 5(G2) = -+ +4xq1,23x(3,4) X{5,6) + 24X(1,2) X(3,4}X(5,6)X(7,8) T X(1,2) (3,4} X{5,6} (3,5}
X123 X3, X(5,63 (1,5} (3,7} T 48X{1,2} (3,4} X{5,6}%{1,9} (7,8}
+16x(1,23 (3,4} (5,63 %{5,7} X{7,8} T 16x(1,23 (3,4} X(5,6}%{1,8} (3,7}
+ 0xg1 2} X{3,4}X{5,6}X{3,5}X{4,6} T " *

By Oxq1,2)X(3,41X{5,6}X{3,5} X{4,6}, there are no homomorphisms
from G, to H. Therefore, Xk ,(G1) # Xk, ,(G2)



The generalization of Stanley’s conjecture

Theorem (Miezaki et al. (2025+))

{Xky.(®) }ken is a complete invariant for finite graphs.

Question (Miezaki et al. (2025+))

Is there a integer k such that Xk, «(®) is a complete invariant
for trees?

Stanley’s conjecture states that Xk, «(e) is a complete
invariant for trees when k = 1.

Theorem (N. (2025+))

Xk (®) is a complete invariant for trees.



The property of Kneser chromatic function

1 Chromatic symmetric function and Kneser chromatic
function
2 The property of Kneser chromatic function
- The strength of invariants for finite graphs
- Power sum expansion

3 Kneser chromatic function distinguishes trees when k = 2



The property of Kneser chromatic function

Theorem (Miezaki et al. (2025+))
Let {Ki k}ken be a Kneser graph series. Then

{XKN,k (.) }kGN

is a complete invariant for finite graphs.

Theorem (Power sum expansion, Miezaki et al.
(2025+))

XKN,k(G): Z (_1)|S‘ Z Px

k
SCE(G) reAd)



Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.
We say {H,},cn is @ universal graph series if for any simple

graph G there exists n such that G is an induced subgraph of
H,.



Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.

We say {H,},cn is @ universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
H,.

{Kn k}72 is universal graph series([Hamburger—Por-Walsh
(2009)]).



Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.

We say {H,},cn is @ universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
H,.

{Kn k}72 is universal graph series([Hamburger—Por-Walsh
(2009)]).
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Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.

We say {H,},cn is @ universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
H,.

{Kn k}72 is universal graph series([Hamburger—Por-Walsh
(2009)]).
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Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.

We say {H,},cn is @ universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
H,.

{Kn k}72 is universal graph series([Hamburger—Por-Walsh
(2009)]).



Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.

We say {H,},cn is @ universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
H,.

{Kn k}72 is universal graph series([Hamburger—Por-Walsh
(2009)]).
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Universal graph series
Definition
- NCN
- {Hp}nen: a family of graphs.

We say {H,},cn is @ universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
H,.

{Kn k}72 is universal graph series([Hamburger—Por-Walsh
(2009)]).

{1,5,6}

: jz,lo,u}
{2,3,7}
@‘ {1,3,4}
{4,8,9}
! {1}
2
2

% 9 {273}%{1,3,4}

i
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H-chromatic function
Definition
- H=(V(H),E(H)): simple graph
- x, (u € V(H)): indeterminates.

For any graph G, the H-chromatic function Xy (G) is
defined as follows:

Xu(G) == Xu(G, x) = Z H Xp(v)-

p€Hom(G,H) veVg

Definition
- H={H,}nen: a universal graph series
We define the universal H-chromatic function as follows:

{XHn ( G)}nEN



The property of universal chromatic function

Theorem (Miezaki et al. (2025+))
Let H = {H,}nen be a universal graph series. Then

{XHn<.)}neN

is a complete invariant for finite graphs.

Example

- { Xk, (®)}ken is a complete invariant for finite graphs.

> Xk, (®) = Xk, () is the chromatic symmetric function.
» Xk ;1 (@) is a stronger invariant than X, (e).



Universal chromatic function

Theorem (Miezaki et al. (2025+))
Let H = {H,}nen be a universal graph series. Then

{ Xk, (®) }nen
is a complete invariant for finite graphs.

Lemma (Godsil and Royle (2001) p.128 Excercise
11)
Let G; and G, be finite graphs. If

|Hom(Gy, F)| = |[Hom(Gy, F)| for any finite graph F, then G,
and G, are isomorphic.



Universal chromatic function

Theorem (Miezaki et al. (2025+))
Let H = {H,}nen be a universal graph series. Then

{XHn(.)}nEN

is a complete invariant for finite graphs.

Proof of Theorem.

Let G; and G, be finite graphs and assume that

Xu,(G1) = Xu,(Gz) for all n. € N. Suppose F is any graph.
Since {H,},en is a universal graph series, there exists nf € N
such that F is an induced subgraph of H,,. Then,

[Hom(Gi, F)| and [Hom(Gy, F)| are determined by Xy, (Gi)
and Xy, (Gz). Hence, we obtain

|Hom(G,, F)| = |[Hom(Gy, F)|. O



The property of Kneser chromatic function

1 Chromatic symmetric function and Kneser chromatic
function
2 The property of Kneser chromatic function
- The strength of invariants for finite graphs
- Power sum expansion

3 Kneser chromatic function distinguishes trees when k = 2



Power sum expansion of Xy (G, x)

Theorem

Xk (6) = 3 (-1 3 py

k
SCE(G) AeAd)

Example

2 2
/\eAgK)l /\€A§<2)u;<1

:pIH_Q'DH_2p01+p§+p;&+p‘&+p®.

reAR)



Weak homomorphism

Definition
Define

Hom™(G, H) = § ¢: V(G) = V(H) |  {p(u),¢(v)} € E(H)
or p(u) = ¢(v)

If {u,v} € E(G) then }

A map in Hom"(G, H) is called a weak homomorphism.

Definition
Define

Wi(G) = Wy(G,x) == > 1T *w

peHom"Y (G,H) veV(G)



Weak complement expansion
Proposition (Miezaki et al. (2025+))

Xu(G)= > (—=1)FIWg(Gs),

SCE(G)

where Gs denotes the spanning subgraph of G with edge set S
and H denotes the complement of H.

Proof.
S EDEIWE(Gs) = YT (=) > | I )
SCE(G) SCE(G) pEHomW (Gg,H) vVEV(G)
= > > COEETT e
@: V(G)—=V(H) SCE, vev(G)
where

E, = {{u, v} € E(G) [{p(u),p(v)} € E(H) }.



Weak complement expansion

Proof.
Since
s =t FE =0
e 0 otherwise.
Thus
DD BICS Vi ] R
¢: V(G)—=V(H) SCE, veV(G)
Therefore,

Xu(G)= Y (=1)IWg(Gs)

SCE(G)



Weak complement expansion of Xy ,

XKN,k(G): Z (_1)|S|Wm(Gs)
SCE(G)

Especially, when k =1,
XKN,l(G) = Z (_1)|S| VVKN1

SCE(G)

= > (D[ Wi (6)

SCE

YL I PR

SCE i=1 jeN

= Z(—1)|S|PA(5)7

SCE

(Gs)

where Gs = G; Ll Gy - - - L Gy



Example of Kneser chromatic function

Figure: Graph Gy

Xy o (G1) = - + 4X{1,2}X{23‘4}X%5.G} + 4X{1.2}X?3,5}X{Q4.5}
+ 240121 X(3,4) X(5,6) X{7,5) + 8X(1 2)X(3,4) X(5,6}X(3,7} T BX(1,2}X{3,4} X{5,6)X(3,5} X{4,6}
+ 48x(1,23X(3,4} (5,61 X{1,9} X{7,8} T 8X{1,2} (3,4} X{5,6}X{3,7} X{4,6} T 16X{1,2}X(3,4} (5,6}
+ 16x01 23 X{3,4}X{5,6} X{1,8}X{3,7} T 120x11 2}X{3,4}X(5,6} X{7,8}X{9,10} T "~

The coefficient of X{172}X{2374}X{2576} and x{l,g}xf375}x{2476} must
be the same, because

{o({1,2}),0({3,4}),0({5,6})} = {{1, 2}, {3,5}, {4,6}},
where 0 = (4,5) € Sy = Aut(Ky2).



k-symmetric function

’ RKN,k = (C[[XW | w e (IE)]]

- Sy: the symmetric group
Define Sym(k) to be the subring of R;?gk consisting of
elements of finite degrees.

1

Xk, (G) belongs to Sym®. Since Xk« (G) is homogeneous
of degree |V(G)|, Xk, (G) belongs to Sym®).

Note that Sym(l) is the ring of symmetric functions and p, is
the bases of Sym.



Notation

Definition

Let {/,...,I,} and {4,..., J,} be two multisets consisting of
elements in (IE) Define an equivalence relation ~ by
{h,...;I,} ~{J,...,Jn} if there exists o € Sy such that

{h,.... .} ={o(h),...,0(Jn)}

as multisets.

Definition

Let P,Sk) denote the equivalence classes of such multisets
discussed above and P == | |°° P,

!

We can regard \ € P as a k-uniform hyper-multigraph.



Example of 77,(,k>
Example (73;51),739)

P = {{14+1+1},{1+2},{3}}

p® - (g D A AL D

We say that A € P is connected if it is connected as a
hyper-multigraph.
= A= )\ U---U N\ in the usual manner.

Example

{ ={{ulud



Linear basis for Sym(k>

Let A=A U--- LA Then we deflne the power sum k-fold
symmetric functlon pr = p,\ € Sym by

L
p)\izl_[ Z Xyt Xl

n
i=1 {I1,...,In}€)\;

Example

pres = ()3 %)

ieN JEN

Z X(i jyX{jk}) Z X{ij})
9./ keN ,_IGN
i#j#k i#j

When k =1, p, is the usual power sum symmetric function



The property of p)

Proposition

The set {p},epw forms a linear basis for Sym®) over C. In
particular, Sym is freely generated as a C-algebra by

{ py € PK ‘ A is connected }

Theorem

X (6) = 3 (-1 3 py

k
SCE(G) AEA(GS)

Recall that the weak complement expansion of X, is as
following:

XKN,k(G) = Z (_1)|SIWKN7,<(GS)

SCE(G)



Admissible

Definition (Admissible)

We say that H € P is admissible by G if there exists a
bijection p: V(G) — E(H) such that for any {u, v} € E(G),
it holds that ¢(u) N p(v) # 0.

Example
We consider G = § and § € 73§2).
The edge set of§ is denoted by {{1,2},{2,3},{3,4}}. Then,

is admissible by § because there exists admissible bijection ¢
such that

H ({12}, (2.3}, {3.4))
©

90(3) = {172}730(17) = {2>3}a QD(C) = {3>4}'



Admissible

_ (k)
Definition (A;’)

Let G be a connected graph with n vertices. We then define
AW as follows:

AL — {H e PW | H is admissible by G}.

If G is disconnected, and G = G U ---U Gy is its
decomp05|t|on into connected components, we define

(k) . (k)
AG — A - X AG[

Example

Ar =g Aath



Power sum expansion

Lemma

where py = py, - px, if A= (A1, Ae).
Proof.

When G is connected,

W@(G) = Z H X<p (v) = Z Px-

p€Hom"™ (G, Ky x) vEV(G )\GA(k)



Power sum expansion

Theorem (Power sum expansion)
XKN,k<G): Z (_1)|S| Z Px,
SCE(G) reAl
S

where Gs is the spanning subgraph of G with edge set S.
Proof.



Kneser chromatic function distinguishes trees when
k=2

1 Chromatic symmetric function and Kneser chromatic
function

2 The property of Kneser chromatic function

- The strength of invariants for finite graphs
- Power sum expansion

3 Kneser chromatic function distinguishes trees when k = 2



Main theorem

Hereinafter, we denote A¢ and P, by A(GQ) and 73,(12).
respectively.

Theorem (Restatement)
Xy (®) is @ complete invariant for trees.

Theorem (Power sum expansion)

Xiio(G) = DY (=) 37 pa

SCE(G) AeAgq

From power sum expansion, when G; and G, are trees,
XKN,Q(Gl) = XKN,Q(GQ) = Ag, = Ag,.

We consider the property of Ag.



Ag from Xy, (G)

Example

XKM@ = pIH - 2PH - 2P01+P§+PA+PA+P& +P®

Define mn o i A Al

From power sum expansion, G = (Jscg(g)Acs and when G is
a tree, Gs is connected if and only if Gs = G.

= A% ={H € G| H is connected}

~ g Aot



The properties of A7(G)

We consider which H € A¢ best reflects the properties of G.
We define

A7(G) ={H € Ag | H is a tree with no multiedges}.

Example

«4§ = {§}& as 6 (b}
A =GR



Minimum rooted vertex sequence

- T: Tree
- d(v): Degree of v
- dr(u,v): Distance from u to v

Definition (Minimum rooted vertex sequence)

Let v = ay, and let {a;}7_, be a vertex sequence of T that
satisfies the following two conditions for any i and j:

~dr(v,a) < dr(v, a).

- If dr(v, a;) = dr(v, a;) and i < j, then d(a;) < d(a)).
Then, we call {a;}7_; a minimum rooted vertex sequence, and
we refer to the degree sequence

(d(v),d(ay),-- -, d(an))

as the minimum degree sequence of v.



Example of minimum rooted vertex sequence

Figure: Minimum rooted vertex sequence

The degree sequence is
(2,3,4,1,1,1,3,3,1,1,1,1).
Therefore,

r(T,a) = (2,3,4,1,1,1,3,3,1,1,1,1).



Minimum leaf, minimum degree sequence

Definition (Minimum leaf)

A vertex v is said to be a minimum leaf if r(T,v) is minimal
in the lexicographical order among all vertices in T.

Definition (Minimum degree sequence)

We call minimum degree sequence of a minimum leaf the
minimum degree sequence of T and denote it by r(T).

Note that, generally, a minimum leaf is not unique, but the
minimum degree sequence of a tree is always unique.



Example of minimum leaf and minimum degree
sequence

Figure: Minimum rooted vertex sequence

r(T,a)=1(2,3,4,1,1,1,3,3,1,1,1, 1),
r(T,ann) =(1,3,1,3,1,2,4,1,1,3,1,1).

Thus,
r(T,a11) <iex r(T,a)



Example of minimum leaf and minimum degree
sequence
(6) O,
(7) (0 () (0
() GO © ONOIOIONNO
OO, & OW®W ® ® @

Figure: Minimum rooted vertex sequence

r(T,a;) =r(T,a12) =(1,3,1,3,1,2,4,1,1,3,1,1).

Since a;; and a;y are the minimum leaves, the minimum
degree sequence of T is

r(T> = (1737 1737 1727 47 17 1737 17 1)'



A7(G) is a complete invariant for trees

We define A+(G) as follows:

Ar(G) = {H € A+(G) | r(H) is the minimum by </ }.

Theorem (A)

Let H € A+(G). Define Hy as a tree which is obtained by
removing any minimum leaf from H. Then, Hy is isomorphic
to G.

This implies A7(G) is a complete invariant for trees.
= This also shows A¢ is a complete invariant for trees.



Example of Theorem

Theorem

Let H € A+(G). Define H, as a tree which is obtained by

removing any minimum leaf from H. Then, Hy is isomorphic
to G.

Example

A@ = é»)&’ as 6 ®}

A =6 A
A =

The graph removing a minimum leaf from § is %



The proof of the main theorem

Theorem
Xk (®) is a complete invariant for trees.

Proof.

Let G, and G, be trees which holds Xy, ,(G1) = Xk, (G2).
Then, Ag, = Ag, and especially A+(Gy) = Ar(Gy).
Therefore, there exists H such that H € A1(Gy) = A1 (Gy).

From Theorem A, Hy ~ G; and Hy ~ G,. Therefore,
Gl ~ G2.

Power sum Theorem A
XKN,2(G) A AT(G) Hy~ G

expansion




Notation

- {a;}1_,: minimum rooted vertex sequence with v = a; as
the root

- d(a;) : The degree of a;

- r(G) = (d(a1),...,d(a,)): Minimum degree sequence of
G

: r(G)k = d(ak)

Definition
For any vertex a; # v, a vertex a;, is called the parent of a;
with v as the root if a;, is adjacent to a; and i, < .

Note that the parent of a; is always uniquely determined.



Lemma A

Lemma (Lemma A)
For any H € Ar,

I’(H) <lex (17 27 r(G>27 I’(G)g, T r(G>n)
Proof.
We construct H € A7(G) such that

r<H) = (1727 I‘(G)Q, r<G)37 ce 7r(G)n)-

Define ¢ : V(G) — (N U2{0}) as follows:
o(ar) = {ip, i},

where we define 1, = 0.



Example of H € A7 (G)

@ {46}
OSENO of e
@ @@@ @ {7,10}/{7,‘8}7,9}{4,5}/ \{172}
ORONENORC wh el b

(a) ¢ (b) Tm(¢)




The property of H
(=)

r(G) - (1737 1737 172747 17 ]'737 17 1)
r(H)=(1,2,3,1,3,1,2,4,1,1,3,1,1)

Proof of Lemma A.
Then, a tree H whose edge set is Im(¢) is admisibble by G and

l‘(H) - (1727 I’(G)Q, r<G)37 T 7r(G)n)~



Theorem A

Theorem
Let H € A+(G). Define Hy as a tree which is obtained by

removing any minimum leaf from H. Then, Hy is isomorphic
to G.

Proof.

Without loss of generality, we assume that
V(H)=1{0,1,...,n}, 0is a minimum leaf, and (0,1,...,n) is
a minimum rooted vertex sequence. Then,

E(H) = {{ip,i} |1 <i<n,iy,is a parent of i}.
Therefore,

T:E(H) — {1,...,n}

{iP7i} i

is a bijection.



The proof of Theorem A

(=)
©, (=2
OJOCIONO
ONO, @ @
(b) G

Figure: 7y : aj — i

Since H is admissible by G, there exists a bijection

¢ : V(G) — E(H). Therefore, To¢: V(G) — V(Hp) is
also bijection. We show that 7y = 7 0 ¢ is a graph
isomorphism.



The property of 74

. TH(a,') =
- Ny(i), Ng(a;) : The neighbor of i in H and that of a; in
G, respectively.

Since ¢ is admissible by G,
¢(Ne(a)) C {{x,y} € E(H) | {ip, i} N {x,y} # 0}.
Applying 7 to both sides, when i, # 0,
TH(NG(a;)) € Niy (ip) U Nigo (7).

If i, =0,
TH(NG(ai)) C Nu(0) U Ni, (7).



The proof of Theorem A

Proof.

We show 74 (Ng(a;)) = Ny(i) by induction on i. Since

H € A+(G), from Lemma A we obtain r(H); = |Ny(1)| =1
and = r(H)y = |Ny(1)] < 2. When |V(G)| > 2, r(H); =2
and this implies

{{x,yy € E(H) |0 € {x,y}} = {{0,1}}
{{x,y} € E(H) [ 1€ {x,y}} = {{0,1},{1,2}}.

Therefore, ¢(v1) = {0,1} and Ny, (1) = {0,2}.



The proof of Theorem A

Proof.
Since ¢ is admissible by G,

TH<NG(81>) C NH(O) U NHO(l)
—{1,2}.

Because 74(a;) = 1 and Ng(a;) # 0,

TH(Ng(a1)) = {2} = Ni, (1).



The proof of Theorem A
Proof.

Next, we assume that 74(Ng(a;)) = Ny, (i) holds for all i
satisfying 1 </ < m < n. Then, there exists p,,,1 < m+1

such that ¢(am+l) = {perla m+ 1}

Figure: m=6



The proof of Theorem A

Similarly to before, since ¢ is admissible by G,

TH<NG(am+1)) - NHo(pm+1) U NHo(m + 1)'

From the assumption, 7(Ng(ap,,,)) = NH,(Pm+1), especially
am+1 € Ng(ap,,,). Therefore,

TH(NG(am+1)) N TH(NG(3p,,,)) = 0

and
TH(Nc;(am_H)) C NHO(m + 1)



The proof of Theorem A

()
(=) (=2
OJOROIRO
OO
@@@
(b) G

Figure: If 7(Ng(a7)) € Ny, (7)

From Lemma A, |Ny,(m +1)| < r(G)msq. If
TH(Ng(am+1)) S Ny, (m + 1), then the degree sequence

(INg(ai)l;- - s [N (ami1)l; [Ne(ax2)], - - [N (ax,)

) <Jex r<G)7

this is contradiction.



The proof of Theorem A

Proof.

Therefore, 7(Ng(am+1)) = Np,(m+ 1). By induction, for all
ie{l,...,n}, Tu(Ng(a;)) = Ni,(i) and this implies

G~ Ho. []



Future work

- What types of graphs, other than trees, is Xk, ,(®) a
complete invariant for?

- For any k, do there exist graphs G; and G, such that
XKk (G1) = Xk (G2), but they are not isomorphic to
each other?



The properties of A7(G)

- G : A set of all finite and simple graphs
- L(G) : The line graph of G

Proposition
Let G be a tree and define

L = {H € G| There exists a homomorphism from G to L(H)}.

Then, L is a complete imvariants for trees.

Question
Is there any other graph class for which L¢ is a complete
invariant?
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