Kneser 彩色関数とツリーの完全不変量 可換代数と組合せ論セミナー

Yusaku Nishimura 1

¹Graduate School of Fundamental Science and Engineering, Waseda University

10/18 2025

Contents

- 1 Chromatic symmetric function and Kneser chromatic function
- 2 The property of Kneser chromatic function
 - · The strength of invariants for finite graphs
 - · Power sum expansion
- 3 Kneser chromatic function distinguishes trees when k=2

Contents

1. Paper: Universal graph series, chromatic functions, and

their index theory arXiv: 2403.09985

Author: Tsuyoshi Miezaki, Akihiro Munemasa, Yusaku

Nishimura, Tadashi Sakuma, and Shuhei Tsujie

2. Paper: The Kneser chromatic function distinguishes

trees

arXiv: 2409.20478

Author: Yusaku Nishimura

Proper coloring

·
$$G = (V(G), E(G))$$
: simple graphs

Definition

A function $f:V(G)\longrightarrow \mathbb{N}$ is called a **proper coloring** if $f(u)\neq f(v)$ for all $\{u,v\}\in E(G)$.

Definition (Graph homomorphism)

 $f: V(G) \rightarrow V(H)$ is a homomorphism if for any $\{x,y\} \in E(G), \{f(x),f(y)\} \in E(H).$

Proper coloring of G

 \iff

Graph homomorphism from G to the complete graph

Chromatic polynomial

- $\operatorname{Hom}(G, H)$: the set of graph homomorphisms from G to H.
- · K_n : the complete graph with n vertices.

Definition

The chromatic polynomial of G is

$$\chi(G, n) = \sharp \operatorname{Hom}(G, K_n).$$

Example

Let T be a tree with m vertices. Then $\chi(T, n) = n(n-1)^{m-1}$.

Chromatic symmetric function

 \cdot $K_{\mathbb{N}}$: the complete graph whose vertex set is the set of natural numbers.

Definition (Stanley (1995))

The chromatic symmetric function of G is

$$X_{K_{\mathbb{N}}}(G):=X_{K_{\mathbb{N}}}(G,x):=\sum_{\varphi\in \mathrm{Hom}(G,K_{\mathbb{N}})}\prod_{\nu\in V_G}x_{\varphi(\nu)}.$$

Remark

$$\mathbf{1}^n := (\underbrace{1,\cdots,1}_n,0,\cdots)$$
. Then, $X_{\mathcal{K}_{\mathbb{N}}}(G,\mathbf{1}^n) = \sum_{\varphi \in \mathrm{Hom}(G,\mathcal{K}_n)} 1 = \sharp \mathrm{Hom}(G,\mathcal{K}_n) = \chi(G,n)$.

Example of chromatic symmetric function

Example (Stanley (1995))

$$X_{K_{\mathbb{N}}}(G_{1}) = 4x_{1}x_{2}^{2}x_{3}^{2} + 4x_{1}^{2}x_{2}^{2}x_{3} + 4x_{1}^{2}x_{2}x_{3}^{2} + 24x_{1}x_{2}x_{3}x_{4}^{2} + \cdots$$

Figure: Graphs G_1 and K_4

$$\chi(G_1,3) = X_{K_{\mathbb{N}}}(G_1,\mathbf{1}^3) = 4+4+4=12$$

Chromatic symmetric function

Theorem (Power sum expansion)

- ▶ G = (V(G), E(G)): a simple graph
- ▶ |V(G)| = n.
- \triangleright S: any subset of E(G).

Define $\lambda(S)$ the partition of n whose parts are equal to the vertex sizes of the connected components of the spanning subgraph of G with edge set S. Then,

$$X_{K_{\mathbb{N}}}(G) = \sum_{S \subset F} (-1)^{|S|} p_{\lambda(S)}$$

Conjecture (Stanley (1995))

If T_1 and T_2 are non-isomorphic trees then

$$X_{\mathcal{K}_{\mathbb{N}}}(T_1) \neq X_{\mathcal{K}_{\mathbb{N}}}(T_2)$$
.

Chromatic symmetric function

However, $X_{K_{\mathbb{N}}}(\bullet)$ is not a complete invariant for graphs.

Example (Stanley (1995))

 G_1 and G_2 are non-isomorphic but

$$X_{K_{\mathbb{N}}}(G_1) = X_{K_{\mathbb{N}}}(G_2)$$

Figure: Graphs G_1 and G_2

k-fold proper coloring

- $\cdot G = (V(G), E(G))$: a simple graph
- $\cdot \binom{\mathbb{N}}{L} := \{I \subset \mathbb{N} : |I| = k\}$

Definition

A function $f:V(G)\longrightarrow \binom{\mathbb{N}}{k}$ is called a k-fold proper **coloring** if $f(u) \cap f(v) = \emptyset$ for every pair of adjacent vertices.

Example

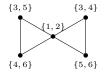


Figure: 2-fold proper coloring

k-fold proper coloring

 \iff graph homomorphism from G to the Kneser graph

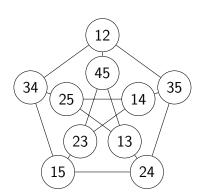
Kneser graph

Definition

The Kneser graph $K_{\mathbb{N},k}$ is the graph whose vertex set is $\binom{\mathbb{N}}{k}$ and for any $A,B\in\binom{\mathbb{N}}{k}$, $A\sim B$ if and only if $A\cap B=\emptyset$.

Remark

 $K_{\mathbb{N},1}$ is the complete graph whose vertex set is the set of natural numbers.



Kneser chromatic function

Definition

- · $K_{\mathbb{N},k}$: the Kneser graph
- $\cdot x_u \ (u \in \binom{\mathbb{N}}{k})$: indeterminates

For any graph G, the Kneser-chromatic function $X_{K_{\mathbb{N},k}}(G)$ is defined as follows:

$$X_{K_{\mathbb{N},k}}(G) := X_{K_{\mathbb{N},k}}(G,x) := \sum_{\varphi \in \mathrm{Hom}(G,K_{\mathbb{N},k})} \prod_{v \in V_G} x_{\varphi(v)}.$$

- lacksquare $X_{K_{\mathbb{N},1}}(ullet)=X_{K_{\mathbb{N}}}(ullet)$ is the chromatic symmetric function.
- ▶ $X_{K_{\mathbb{N},k+1}}(G)$ is a stronger invariant than $X_{K_{\mathbb{N},k}}(\bullet)$: If $X_{K_{\mathbb{N},k+1}}(G) = X_{K_{\mathbb{N},k+1}}(H)$, then $X_{K_{\mathbb{N},k}}(G) = X_{K_{\mathbb{N},k}}(H)$.

Example of Kneser chromatic function

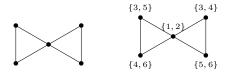


Figure: Graphs G_1 and $H' \hookrightarrow K_{\mathbb{N},2}$

$$\begin{split} X_{K_{\mathbb{N},2}}(G_1) &= \sum_{\varphi \in \operatorname{Hom}(G_1,K_{\mathbb{N},2})} \prod_{v \in V(G_1)} x_{\varphi(v)} \\ &= \dots + 4x_{\{1,2\}} x_{\{3,4\}}^2 x_{\{5,6\}}^2 \\ &+ 24x_{\{1,2\}} x_{\{3,4\}} x_{\{5,6\}} x_{\{7,8\}}^2 + 8x_{\{1,2\}}^2 x_{\{3,4\}} x_{\{5,6\}} x_{\{3,7\}}^2 + 8x_{\{1,2\}} x_{\{3,4\}} x_{\{5,6\}} x_{\{3,5\}}^2 x_{\{4,6\}} \\ &+ 48x_{\{1,2\}} x_{\{3,4\}} x_{\{5,6\}} x_{\{1,9\}} x_{\{7,8\}} + 8x_{\{1,2\}} x_{\{3,4\}} x_{\{5,6\}} x_{\{3,7\}} x_{\{4,6\}} + 16x_{\{1,2\}} x_{\{3,4\}} x_{\{5,6\}} x_{\{1,8\}} x_{\{3,7\}} + 120x_{\{1,2\}} x_{\{3,4\}} x_{\{5,6\}} x_{\{7,8\}} x_{\{9,10\}} + \dots \end{split}$$

By $8x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{3,5\}}x_{\{4,6\}}$, there are 8 homomorphisms from G_1 to H'.

Example of Kneser chromatic function

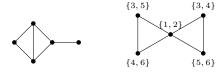


Figure: Graphs G_2 and $H' \hookrightarrow K_{\mathbb{N},2}$

$$\begin{split} X_{K_{\mathbb{N},2}}(G_2) &= \dots + 4x_{\{1,2\}}x_{\{3,4\}}^2x_{\{5,6\}}^2 + 24x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{7,8\}}^2 + x_{\{1,2\}}^2x_{\{3,4\}}x_{\{5,6\}}x_{\{3,5\}} \\ &\quad + 4x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{1,5\}}x_{\{3,7\}} + 48x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{1,9\}}x_{\{7,8\}} \\ &\quad + 16x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{5,7\}}x_{\{7,8\}} + 16x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{1,8\}}x_{\{3,7\}} \\ &\quad + 0x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{3,5\}}x_{\{4,6\}} + \dots \end{split}$$

By $0x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{3,5\}}x_{\{4,6\}}$, there are no homomorphisms from G_2 to H. Therefore, $X_{K_{\mathbb{N},2}}(G_1) \neq X_{K_{\mathbb{N},2}}(G_2)$

The generalization of Stanley's conjecture

```
Theorem (Miezaki et al. (2025+)) \{X_{K_{\mathbb{N},k}}(\bullet)\}_{k\in\mathbb{N}} is a complete invariant for finite graphs.
```

Question (Miezaki et al. (2025+))

Is there a integer k such that $X_{K_{\mathbb{N}},k}(\bullet)$ is a complete invariant for trees?

Stanley's conjecture states that $X_{K_{\mathbb{N}},k}(\bullet)$ is a complete invariant for trees when k=1.

Theorem (N. (2025+))

 $X_{K_{\mathbb{N},2}}(\bullet)$ is a complete invariant for trees.

The property of Kneser chromatic function

- 1 Chromatic symmetric function and Kneser chromatic function
- 2 The property of Kneser chromatic function
 - · The strength of invariants for finite graphs
 - · Power sum expansion
- 3 Kneser chromatic function distinguishes trees when k=2

The property of Kneser chromatic function

Theorem (Miezaki et al. (2025+)) Let $\{K_{\mathbb{N},k}\}_{k\in\mathbb{N}}$ be a Kneser graph series. Then

$$\{X_{K_{\mathbb{N},k}}(\bullet)\}_{k\in\mathbb{N}}$$

is a complete invariant for finite graphs.

Theorem (Power sum expansion, Miezaki et al. (2025+))

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\lambda \in \mathcal{A}_{G_S}^{(k)}} p_{\lambda}$$

Definition

- $\cdot N \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .

Definition

- \cdot $N \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .

Definition

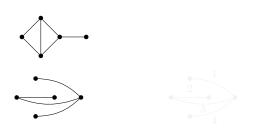
- $\cdot \ \mathsf{N} \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .

Definition

- $\cdot N \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

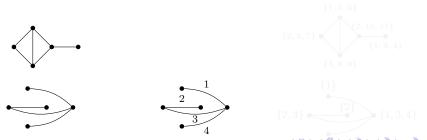
We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .



Definition

- $\cdot N \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

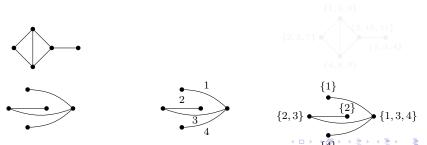
We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .



Definition

- $\cdot N \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

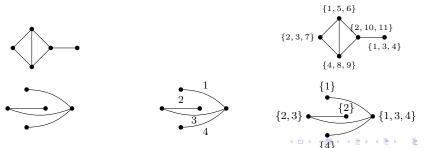
We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .



Definition

- $\cdot N \subset \mathbb{N}$
- $\{H_n\}_{n\in\mathbb{N}}$: a family of graphs.

We say $\{H_n\}_{n\in\mathbb{N}}$ is **a universal graph series** if for any simple graph G there exists n such that G is an induced subgraph of H_n .



H-chromatic function

Definition

- $\cdot H = (V(H), E(H))$: simple graph
- $\cdot x_u \ (u \in V(H))$: indeterminates.

For any graph G, the H-chromatic function $X_H(G)$ is defined as follows:

$$X_H(G) := X_H(G,x) := \sum_{\varphi \in \operatorname{Hom}(G,H)} \prod_{v \in V_G} x_{\varphi(v)}.$$

Definition

· $H = \{H_n\}_{n \in N}$: a universal graph series

We define **the universal** *H***-chromatic function** as follows:

$$\{X_{H_n}(G)\}_{n\in\mathbb{N}}$$

The property of universal chromatic function

Theorem (Miezaki et al. (2025+)) Let $H = \{H_n\}_{n \in N}$ be a universal graph series. Then

$$\{X_{H_n}(\bullet)\}_{n\in\mathbb{N}}$$

is a complete invariant for finite graphs.

Example

- · $\{X_{K_{\mathbb{N},k}}(\bullet)\}_{k\in\mathbb{N}}$ is a complete invariant for finite graphs.
 - $X_{K_{\mathbb{N},1}}(\bullet) = X_{K_{\mathbb{N}}}(\bullet)$ is the chromatic symmetric function.
 - $ightharpoonup X_{K_{\mathbb{N},k+1}}(ullet)$ is a stronger invariant than $X_{K_{\mathbb{N},k}}(ullet)$.

Universal chromatic function

Theorem (Miezaki et al. (2025+))

Let $H = \{H_n\}_{n \in N}$ be a universal graph series. Then

$$\{X_{H_n}(\bullet)\}_{n\in\mathbb{N}}$$

is a complete invariant for finite graphs.

Lemma (Godsil and Royle (2001) p.128 Excercise 11)

Let G_1 and G_2 be finite graphs. If $|\operatorname{Hom}(G_1,F)|=|\operatorname{Hom}(G_2,F)|$ for any finite graph F, then G_1 and G_2 are isomorphic.

Universal chromatic function

Theorem (Miezaki et al. (2025+))

Let $H = \{H_n\}_{n \in N}$ be a universal graph series. Then

$$\{X_{H_n}(\bullet)\}_{n\in N}$$

is a complete invariant for finite graphs.

Proof of Theorem.

Let G_1 and G_2 be finite graphs and assume that $X_{H_n}(G_1)=X_{H_n}(G_2)$ for all $n\in N$. Suppose F is any graph. Since $\{H_n\}_{n\in N}$ is a universal graph series, there exists $n_f\in N$ such that F is an induced subgraph of H_{n_f} . Then, $|\operatorname{Hom}(G_1,F)|$ and $|\operatorname{Hom}(G_2,F)|$ are determined by $X_{H_{n_f}}(G_1)$ and $X_{H_{n_f}}(G_2)$. Hence, we obtain $|\operatorname{Hom}(G_1,F)|=|\operatorname{Hom}(G_2,F)|$.

The property of Kneser chromatic function

- 1 Chromatic symmetric function and Kneser chromatic function
- 2 The property of Kneser chromatic function
 - · The strength of invariants for finite graphs
 - · Power sum expansion
- 3 Kneser chromatic function distinguishes trees when k=2

Power sum expansion of $X_{K_{\mathbb{N},k}}(G,x)$

Theorem

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\lambda \in \mathcal{A}_{Gs}^{(k)}} p_{\lambda}$$

Example

$$X_{\mathcal{K}_{\mathbb{N},1}}(\overset{\lozenge}{\Diamond}) = p_3 - 2p_{2,1} + p_{1,1,1}$$

$$X_{\mathcal{K}_{\mathbb{N},2}}(\overset{\lozenge}{\Diamond}) = \sum_{\lambda \in \mathcal{A}_{3K_1}^{(2)}} p_{\lambda} - 2\sum_{\lambda \in \mathcal{A}_{K_2 \sqcup K_1}^{(2)}} p_{\lambda} + \sum_{\lambda \in \mathcal{A}_{P_3}^{(2)}} p_{\lambda}$$

$$= p_{111} - 2p_{11} - 2p_{11} - 2p_{11} + p_{11} + p_{12} + p_{13} + p_{14} + p_{15}.$$

Weak homomorphism

Definition

Define

$$\operatorname{Hom}^{\operatorname{w}}(G,H) := \left\{ \begin{array}{ll} \operatorname{lf} \left\{ u,v \right\} \in E(G) \text{ then} \\ \varphi \colon V(G) \to V(H) \mid & \left\{ \varphi(u),\varphi(v) \right\} \in E(H) \\ & \operatorname{or} \varphi(u) = \varphi(v) \end{array} \right\}$$

A map in $Hom^{w}(G, H)$ is called a **weak homomorphism**.

Definition

Define

$$W_H(G) := W_H(G, x) := \sum_{\varphi \in \operatorname{Hom}^{\operatorname{w}}(G, H)} \prod_{v \in V(G)} x_{\varphi(v)}.$$

Weak complement expansion

Proposition (Miezaki et al. (2025+))

$$X_H(G) = \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{H}}(G_S),$$

where G_S denotes the spanning subgraph of G with edge set S and \overline{H} denotes the complement of H.

Proof.

$$\begin{split} \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{H}}(G_S) &= \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\varphi \in \operatorname{Hom^w}(G_S, \overline{H})} \prod_{v \in V(G)} x_{\varphi(v)} \\ &= \sum_{\varphi \colon V(G) \to V(H)} \sum_{S \subset E_\varphi} (-1)^{|S|} \prod_{v \in V(G)} x_{\varphi(v)}, \end{split}$$

where

$$E_{\varphi} = \{ \{u, v\} \in E(G) \mid \{\varphi(u), \varphi(v)\} \notin E(H) \}.$$

Weak complement expansion

Proof.

Since

$$\sum_{S \subset \mathcal{E}_{\varphi}} (-1)^{|S|} = \begin{cases} 1 & \text{if } \mathcal{E}_{\varphi} = \emptyset. \\ 0 & \text{otherwise.} \end{cases}$$

Thus

$$\sum_{\varphi \colon V(\mathcal{G}) \to V(\mathcal{H})} \sum_{S \subset E_{\varphi}} (-1)^{|S|} \prod_{v \in V(\mathcal{G})} \mathsf{x}_{\varphi(v)} = \mathsf{X}_{\mathcal{H}}(\mathcal{G}).$$

Therefore,

$$X_H(G) = \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{H}}(G_S)$$

Weak complement expansion of $X_{K_{\mathbb{N},k}}$

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{K_{\mathbb{N},k}}}(G_S)$$

Especially, when k = 1,

$$\begin{split} X_{K_{\mathbb{N},1}}(G) &= \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{K_{\mathbb{N},1}}}(G_S) \\ &= \sum_{S \subset E} (-1)^{|S|} \prod_{i=1}^{m_S} W_{\overline{K_{\mathbb{N},1}}}(G_i) \\ &= \sum_{S \subset E} (-1)^{|S|} \prod_{i=1}^{m_S} \sum_{i \in \mathbb{N}} x_i^{|G_i|} \\ &= \sum_{S \subset E} (-1)^{|S|} p_{\lambda(S)}, \end{split}$$

Example of Kneser chromatic function

Figure: Graph G₁

$$\begin{split} X_{\mathsf{K}_{\mathbb{N},2}}(G_1) &= \cdots + 4x_{\{1,2\}}x_{\{3,4\}}^2x_{\{5,6\}}^2 + 4x_{\{1,2\}}x_{\{3,5\}}^2x_{\{4,6\}}^2 \\ &\quad + 24x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{7,8\}}^2 + 8x_{\{1,2\}}^2x_{\{3,4\}}x_{\{5,6\}}x_{\{3,7\}} + 8x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{3,5\}}x_{\{4,6\}} \\ &\quad + 48x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{1,9\}}x_{\{7,8\}} + 8x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{3,7\}}x_{\{4,6\}} + 16x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}} \\ &\quad + 16x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{1,8\}}x_{\{3,7\}} + 120x_{\{1,2\}}x_{\{3,4\}}x_{\{5,6\}}x_{\{7,8\}}x_{\{9,10\}} + \cdots \end{split}$$

The coefficient of $x_{\{1,2\}}x_{\{3,4\}}^2x_{\{5,6\}}^2$ and $x_{\{1,2\}}x_{\{3,5\}}^2x_{\{4,6\}}^2$ must be the same, because

$$\{\sigma(\{1,2\}),\sigma(\{3,4\}),\sigma(\{5,6\})\}=\{\{1,2\},\{3,5\},\{4,6\}\},$$

where $\sigma = (4,5) \in S_{\mathbb{N}} = \operatorname{Aut}(K_{\mathbb{N},2}).$

k-symmetric function

- $\cdot R_{K_{\mathbb{N},k}} \coloneqq \mathbb{C}[\![x_w \mid w \in \binom{\mathbb{N}}{k}]\!]$
- · $S_{\mathbb{N}}$: the symmetric group

Define $\mathrm{Sym}^{(k)}$ to be the subring of $R_{K_{\mathbb{N},k}}^{S_{\mathbb{N}}}$ consisting of elements of finite degrees.

 \downarrow

 $X_{K_{\mathbb{N},k}}(G)$ belongs to $\operatorname{Sym}^{(k)}$. Since $X_{K_{\mathbb{N},k}}(G)$ is homogeneous of degree |V(G)|, $X_{K_{\mathbb{N},k}}(G)$ belongs to $\operatorname{Sym}^{(k)}$.

Note that $\operatorname{Sym}^{(1)}$ is the ring of symmetric functions and p_{λ} is the bases of $\operatorname{Sym}^{(1)}$.

Notation

Definition

Let $\{I_1,\ldots,I_n\}$ and $\{J_1,\ldots,J_n\}$ be two multisets consisting of elements in $\binom{\mathbb{N}}{k}$. Define an equivalence relation \sim by $\{I_1,\ldots,I_n\}\sim\{J_1,\ldots,J_n\}$ if there exists $\sigma\in\mathcal{S}_{\mathbb{N}}$ such that

$$\{I_1,\ldots,I_n\}=\{\sigma(J_1),\ldots,\sigma(J_n)\}$$

as multisets.

Definition

Let $\mathcal{P}_n^{(k)}$ denote the equivalence classes of such multisets discussed above and $\mathcal{P}^{(k)} \coloneqq \bigsqcup_{n=1}^{\infty} \mathcal{P}_n^{(k)}$.

We can regard $\lambda \in \mathcal{P}_n^{(k)}$ as a k-uniform hyper-multigraph.

Example of $\mathcal{P}_n^{(k)}$

Example
$$(\mathcal{P}_3^{(1)},\mathcal{P}_3^{(2)})$$

$$\begin{split} \mathcal{P}_{3}^{(1)} &= \{\{1+1+1\}, \{1+2\}, \{3\}\} \\ \mathcal{P}_{3}^{(2)} &= \{\{\{1, 1, 1\}, \{0, 1\}, 1, 1, 1\}, \{0, 1\}, 1, 1, 1\} \\ \end{split}$$

We say that $\lambda \in \mathcal{P}^{(k)}$ is connected if it is connected as a hyper-multigraph.

 $\Longrightarrow \lambda = \lambda_1 \sqcup \cdots \sqcup \lambda_\ell$ in the usual manner.

Example

$$\{ []]\} = \{ [\; \sqcup \; [\; \sqcup \;] \}$$

Linear basis for $Sym^{(k)}$

Let $\lambda = \lambda_1 \sqcup \cdots \sqcup \lambda_\ell$. Then, we define the power sum k-fold symmetric function $p_{\lambda} = p_{\lambda}^{(k)} \in \operatorname{Sym}^{(k)}$ by

$$p_{\lambda} := \prod_{i=1}^{\ell} \sum_{\{I_1,\ldots,I_n\} \in \lambda_i} x_{I_1} \cdots x_{I_n}.$$

Example

$$p_{1+2} = \left(\sum_{i \in \mathbb{N}} x_i\right) \left(\sum_{j \in \mathbb{N}} x_j^2\right)$$

$$p_{\{ \downarrow \} \}} = \left(\sum_{\substack{i,j,k \in \mathbb{N} \\ i \neq j \neq k}} x_{\{i,j\}} x_{\{j,k\}}\right) \left(\sum_{\substack{i,j \in \mathbb{N} \\ i \neq j}} x_{\{i,j\}}\right)$$

When k=1, p_{λ} is the usual power sum symmetric function.

The property of p_{λ}

Proposition

The set $\{p_{\lambda}\}_{{\lambda}\in\mathcal{P}^{(k)}}$ forms a linear basis for $\operatorname{Sym}^{(k)}$ over \mathbb{C} . In particular, $\operatorname{Sym}^{(k)}$ is freely generated as a \mathbb{C} -algebra by $\{p_{\lambda}\in\mathcal{P}^{(k)}\mid \lambda \text{ is connected }\}.$

Theorem

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\lambda \in \mathcal{A}_{G_S}^{(k)}} p_{\lambda}$$

Recall that the weak complement expansion of $X_{K_{\mathbb{N},k}}$ is as following:

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{K_{\mathbb{N},k}}}(G_S)$$

Admissible

Definition (Admissible)

We say that $H \in \mathcal{P}_n^{(k)}$ is **admissible** by G if there exists a bijection $\varphi \colon V(G) \to E(H)$ such that for any $\{u, v\} \in E(G)$, it holds that $\varphi(u) \cap \varphi(v) \neq \emptyset$.

Example

The edge set of $\begin{tabular}{|c|c|c|c|c|} \hline \end{tabular}$ is denoted by $\{\{1,2\},\{2,3\},\{3,4\}\}.$ Then,

is admissible by \S , because there exists admissible bijection φ such that

Admissible

Definition $(\mathcal{A}_{G}^{(k)})$

Let G be a connected graph with n vertices. We then define $\mathcal{A}_G^{(k)}$ as follows:

$$\mathcal{A}_{G}^{(k)} \coloneqq \{H \in \mathcal{P}_{n}^{(k)} \mid H \text{ is admissible by } G\}.$$

If G is disconnected, and $G = G_1 \sqcup \cdots \sqcup G_\ell$ is its decomposition into connected components, we define $\mathcal{A}_G^{(k)} \coloneqq \mathcal{A}_{G_1}^{(k)} \times \cdots \times \mathcal{A}_{G_\ell}^{(k)}$.

Example

$$\mathcal{A}_{\lozenge}^{(2)} = \{ , \bigwedge, \triangle, \emptyset, \emptyset \}$$

Power sum expansion

Lemma

$$W_{\overline{K_{\mathbb{N},k}}}(G) = \sum_{\lambda \in \mathcal{A}_G^{(k)}} p_{\lambda},$$

where $p_{\lambda} = p_{\lambda_1} \cdots p_{\lambda_\ell}$ if $\lambda = (\lambda_1, \dots, \lambda_\ell)$.

Proof.

When G is connected,

$$W_{\overline{K_{\mathbb{N},k}}}(G) = \sum_{\varphi \in \operatorname{Hom^w}(G,\overline{K_{\mathbb{N},k}})} \prod_{v \in V(G)} x_{\varphi(v)} = \sum_{\lambda \in \mathcal{A}_G^{(k)}} p_{\lambda}.$$

Power sum expansion

Theorem (Power sum expansion)

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\lambda \in \mathcal{A}_{G_{S}}^{(k)}} p_{\lambda},$$

where G_S is the spanning subgraph of G with edge set S. Proof.

$$X_{K_{\mathbb{N},k}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} W_{\overline{K_{\mathbb{N},k}}}(G)$$
$$= \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\lambda \in A_{\mathcal{C}}^{(k)}} p_{\lambda}$$

Kneser chromatic function distinguishes trees when k = 2

- 1 Chromatic symmetric function and Kneser chromatic function
- 2 The property of Kneser chromatic function
 - · The strength of invariants for finite graphs
 - · Power sum expansion
- 3 Kneser chromatic function distinguishes trees when k = 2

Main theorem

Hereinafter, we denote \mathcal{A}_G and \mathcal{P}_n by $\mathcal{A}_G^{(2)}$ and $\mathcal{P}_n^{(2)}$, respectively.

Theorem (Restatement)

 $X_{K_{\mathbb{N}}}{}_{2}(ullet)$ is a complete invariant for trees.

Theorem (Power sum expansion)

$$X_{K_{\mathbb{N},2}}(G) = \sum_{S \subset E(G)} (-1)^{|S|} \sum_{\lambda \in \mathcal{A}_{G_S}} p_{\lambda}.$$

From power sum expansion, when G_1 and G_2 are trees,

$$X_{K_{\mathbb{N},2}}(G_1) = X_{K_{\mathbb{N},2}}(G_2) \Longrightarrow \mathcal{A}_{G_1} = \mathcal{A}_{G_2}.$$

We consider the property of A_G .

$$\mathcal{A}_G$$
 from $X_{K_{\mathbb{N},2}}(G)$

Example

$$X_{K_{\mathbb{N},2}}(\overset{\Diamond}{\lozenge}) = \rho \underbrace{\bigcap}_{\mathbb{N}} - 2\rho \underbrace{\bigcap}_{\mathbb{N}} + \rho \underbrace{\bigcap}_{\mathbb{N}} + \rho$$

$$\mathcal{G} = \{\{\{[], \{[], \{[], [], [], \downarrow, \dot{\wedge}, \dot{\wedge}, \dot{0}, \dot{0}\}\}.$$

From power sum expansion, $\mathcal{G} = \bigcup_{S \subset E(G)} \mathcal{A}_{G_S}$ and when G is a tree, G_S is connected if and only if $G_S = G$.

$$\implies \mathcal{A}_{\lozenge} = \{ H \in \mathcal{G} \mid H \text{ is connected} \}$$
$$= \{ \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1} \}.$$

The properties of $\Lambda_T(G)$

We consider which $H \in \mathcal{A}_G$ best reflects the properties of G. We define

$$\Lambda_{\mathcal{T}}(G) := \{ H \in \mathcal{A}_G \mid H \text{ is a tree with no multiedges} \}.$$

Example

$$\mathcal{A}_{\stackrel{\circ}{\mathbb{Q}}} = \{ \stackrel{\bullet}{\downarrow}, \stackrel{\downarrow}{\bigwedge}, \stackrel{\bullet}{\bigtriangleup}, \stackrel{\downarrow}{\emptyset} \}$$

$$\Lambda_{\mathcal{T}}(\stackrel{\circ}{\mathbb{Q}}) = \{ \stackrel{\bullet}{\downarrow}, \stackrel{\downarrow}{\bigwedge} \}$$

Minimum rooted vertex sequence

- *T*: Tree
- · d(v): Degree of v
- · $d_T(u, v)$: Distance from u to v

Definition (Minimum rooted vertex sequence)

Let $v = a_1$, and let $\{a_i\}_{i=1}^n$ be a vertex sequence of T that satisfies the following two conditions for any i and j:

- $\cdot d_T(v, a_i) \leq d_T(v, a_j).$
- · If $d_T(v, a_i) = d_T(v, a_j)$ and $i \leq j$, then $d(a_i) \leq d(a_j)$.

Then, we call $\{a_i\}_{i=1}^n$ a minimum rooted vertex sequence, and we refer to the degree sequence

$$(d(v), d(a_2), \cdots, d(a_n))$$

as the minimum degree sequence of v.

Example of minimum rooted vertex sequence

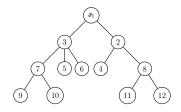


Figure: Minimum rooted vertex sequence

The degree sequence is

Therefore,

$$r(T, a_1) = (2, 3, 4, 1, 1, 1, 3, 3, 1, 1, 1, 1).$$

Minimum leaf, minimum degree sequence

Definition (Minimum leaf)

A vertex v is said to be a *minimum leaf* if r(T, v) is minimal in the lexicographical order among all vertices in T.

Definition (Minimum degree sequence)

We call minimum degree sequence of a minimum leaf the minimum degree sequence of T and denote it by r(T).

Note that, generally, a minimum leaf is not unique, but the minimum degree sequence of a tree is always unique.

Example of minimum leaf and minimum degree sequence

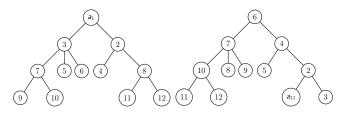


Figure: Minimum rooted vertex sequence

$$r(T, a_1) = (2, 3, 4, 1, 1, 1, 3, 3, 1, 1, 1, 1),$$

 $r(T, a_{11}) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1).$

Thus,

$$r(T, a_{11}) \leq_{lex} r(T, a_1)$$

Example of minimum leaf and minimum degree sequence

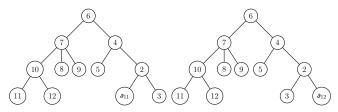


Figure: Minimum rooted vertex sequence

$$r(T, a_{11}) = r(T, a_{12}) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1).$$

Since a_{11} and a_{12} are the minimum leaves, the minimum degree sequence of T is

$$r(T) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1).$$

$\tilde{\Lambda}_{\mathcal{T}}(\mathbf{G})$ is a complete invariant for trees

We define $\tilde{\Lambda}_{\mathcal{T}}(G)$ as follows:

$$\tilde{\Lambda}_{\mathcal{T}}(\mathit{G}) \coloneqq \{H \in \Lambda_{\mathcal{T}}(\mathit{G}) \mid r(H) \text{ is the minimum by } \leq_{\mathit{lex}} \}.$$

Theorem (A)

Let $H \in \tilde{\Lambda}_T(G)$. Define H_0 as a tree which is obtained by removing any minimum leaf from H. Then, H_0 is isomorphic to G.

This implies $\tilde{\Lambda}_{\mathcal{T}}(G)$ is a complete invariant for trees. \Longrightarrow This also shows \mathcal{A}_G is a complete invariant for trees.

Example of Theorem

Theorem

Let $H \in \tilde{\Lambda}_{\mathcal{T}}(G)$. Define H_0 as a tree which is obtained by removing any minimum leaf from H. Then, H_0 is isomorphic to G.

Example

$$\mathcal{A}_{\stackrel{\circ}{\Diamond}} = \{ \stackrel{\bullet}{\downarrow}, \stackrel{\wedge}{\downarrow}, \stackrel{\bullet}{\Diamond}, \stackrel{\emptyset}{\downarrow} \}$$

$$\Lambda_{\mathcal{T}}(\stackrel{\circ}{\Diamond}) = \{ \stackrel{\bullet}{\downarrow}, \stackrel{\wedge}{\downarrow} \}$$

$$\tilde{\Lambda}_{\mathcal{T}}(\stackrel{\circ}{\Diamond}) = \{ \stackrel{\bullet}{\downarrow} \}$$

The graph removing a minimum leaf from $\frac{1}{2}$ is $\frac{6}{5}$.

The proof of the main theorem

Theorem

 $X_{\mathcal{K}_{\mathbb{N},2}}(ullet)$ is a complete invariant for trees.

Proof.

Let G_1 and G_2 be trees which holds $X_{K_{\mathbb{N},2}}(G_1) = X_{K_{\mathbb{N},2}}(G_2)$. Then, $\mathcal{A}_{G_1} = \mathcal{A}_{G_2}$ and especially $\tilde{\Lambda}_{\mathcal{T}}(G_1) = \tilde{\Lambda}_{\mathcal{T}}(G_2)$. Therefore, there exists H such that $H \in \tilde{\Lambda}_{\mathcal{T}}(G_1) = \tilde{\Lambda}_{\mathcal{T}}(G_2)$. From Theorem A, $H_0 \simeq G_1$ and $H_0 \simeq G_2$. Therefore, $G_1 \simeq G_2$.

$$X_{\mathcal{K}_{\mathbb{N},2}}(G)$$
 Power sum \mathcal{A}_G $\widetilde{\Lambda}_{\mathcal{T}}(G)$ Theorem A $\mathcal{H}_0 \simeq G$

Notation

- $\{a_i\}_{i=1}^n$: minimum rooted vertex sequence with $v=a_1$ as the root
- $\cdot d(a_i)$: The degree of a_i
- $r(G) = (d(a_1), \dots, d(a_n))$: Minimum degree sequence of G
- $\cdot r(G)_k = d(a_k)$

Definition

For any vertex $a_i \neq v$, a vertex a_{i_p} is called the parent of a_i with v as the root if a_{i_p} is adjacent to a_i and $i_p < i$.

Note that the parent of a_i is always uniquely determined.

Lemma A

Lemma (Lemma A)

For any $H \in \tilde{\Lambda}_T$,

$$r(H) \leq_{lex} (1, 2, r(G)_2, r(G)_3, \cdots, r(G)_n).$$

Proof.

We construct $H \in \Lambda_T(G)$ such that

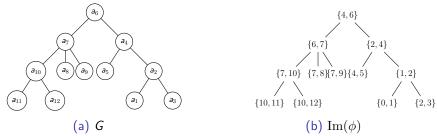
$$r(H) = (1, 2, r(G)_2, r(G)_3, \cdots, r(G)_n).$$

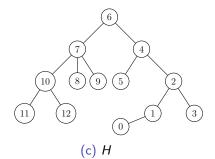
Define
$$\phi:V(\mathcal{G})\longrightarrow \binom{\mathbb{N}\cup\{0\}}{2}$$
 as follows:

$$\phi(a_i) = \{i_p, i\},\,$$

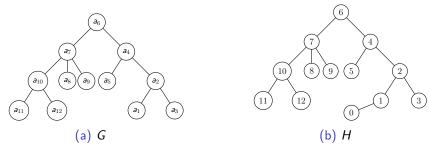
where we define $1_p = 0$.

Example of $H \in \Lambda_T(G)$





The property of H



$$r(G) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1)$$

 $r(H) = (1, 2, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1)$

Proof of Lemma A.

Then, a tree H whose edge set is $\mathrm{Im}(\phi)$ is admisibble by G and

$$r(H) = (1, 2, r(G)_2, r(G)_3, \cdots, r(G)_n).$$

Theorem A

Theorem

Let $H \in \tilde{\Lambda}_T(G)$. Define H_0 as a tree which is obtained by removing any minimum leaf from H. Then, H_0 is isomorphic to G.

Proof.

Without loss of generality, we assume that $V(H) = \{0, 1, ..., n\}$, 0 is a minimum leaf, and (0, 1, ..., n) is a minimum rooted vertex sequence. Then,

$$E(H) = \{\{i_p, i\} \mid 1 \le i \le n, i_p \text{ is a parent of } i\}.$$

Therefore,

$$\tau: E(H) \longrightarrow \{1, \dots, n\}$$
$$\{i_p, i\} \mapsto i$$

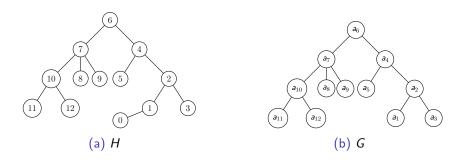


Figure: $\tau_H : a_i \mapsto i$

Since H is admissible by G, there exists a bijection $\phi:V(G)\longrightarrow E(H)$. Therefore, $\tau\circ\phi:V(G)\longrightarrow V(H_0)$ is also bijection. We show that $\tau_H=\tau\circ\phi$ is a graph isomorphism.

The property of τ_H

- $\cdot \ \tau_H(a_i) = i$
- $N_H(i), N_G(a_i)$: The neighbor of i in H and that of a_i in G, respectively.

Since ϕ is admissible by G,

$$\phi(N_G(a_i)) \subset \{\{x,y\} \in E(H) \mid \{i_p,i\} \cap \{x,y\} \neq \emptyset\}.$$

Applying τ to both sides, when $i_p \neq 0$,

$$au_H(N_G(a_i)) \subset N_{H_0}(i_p) \cup N_{H_0}(i).$$

If
$$\emph{i}_{\it p}=0$$
,
$$\tau_{\it H}(\emph{N}_{\it G}(\emph{a}_{\it i})) \subset \emph{N}_{\it H}(0) \cup \emph{N}_{\it H_0}(\emph{i}).$$

Proof.

We show $\tau_H(N_G(a_i))=N_H(i)$ by induction on i. Since $H\in \tilde{\Lambda}_T(G)$, from Lemma A we obtain $r(H)_1=|N_H(1)|=1$ and $=r(H)_2=|N_H(1)|\leq 2$. When $|V(G)|\geq 2$, $r(H)_2=2$ and this implies

$$\{\{x,y\} \in E(H) \mid 0 \in \{x,y\}\} = \{\{0,1\}\}$$
$$\{\{x,y\} \in E(H) \mid 1 \in \{x,y\}\} = \{\{0,1\},\{1,2\}\}.$$

Therefore, $\phi(\mathbf{v}_1) = \{0, 1\}$ and $\mathbf{N}_{H_0}(1) = \{0, 2\}$.

Proof.

Since ϕ is admissible by G,

$$\tau_{H}(N_{G}(a_{1})) \subset N_{H}(0) \cup N_{H_{0}}(1)$$

$$= \{1, 2\}.$$

Because
$$\tau_{H}(a_1) = 1$$
 and $N_{G}(a_1) \neq \emptyset$,

$$\tau_{H}(N_{G}(a_{1})) = \{2\} = N_{H_{0}}(1).$$

Proof.

Next, we assume that $\tau_H(N_G(a_i)) = N_{H_0}(i)$ holds for all i satisfying $1 \le i \le m < n$. Then, there exists $p_{m+1} < m+1$ such that $\phi(a_{m+1}) = \{p_{m+1}, m+1\}$.

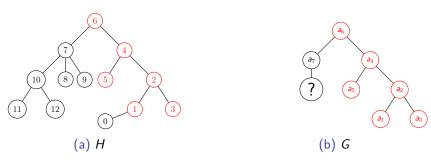


Figure: m = 6

Similarly to before, since ϕ is admissible by G,

$$\tau_{H}(N_{G}(a_{m+1})) \subset N_{H_0}(p_{m+1}) \cup N_{H_0}(m+1).$$

From the assumption, $\tau_H(N_G(a_{p_{m+1}}))=N_{H_0}(p_{m+1})$, especially $a_{m+1}\in N_G(a_{p_{m+1}})$. Therefore,

$$\tau_{H}(N_{G}(a_{m+1})) \cap \tau_{H}(N_{G}(a_{p_{m+1}})) = \emptyset$$

and

$$au_{H}(N_{G}(a_{m+1})) \subset N_{H_{0}}(m+1).$$

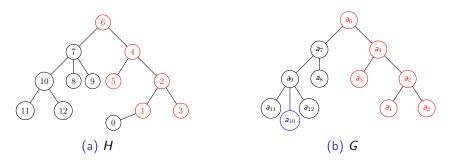


Figure: If
$$\tau_H(N_G(a_7)) \subsetneq N_{H_0}(7)$$

From Lemma A, $|N_{H_0}(m+1)| \le r(G)_{m+1}$. If $\tau_H(N_G(a_{m+1})) \subsetneq N_{H_0}(m+1)$, then the degree sequence

$$(|N_G(a_1)|, \ldots, |N_G(a_{m+1})|, |N_G(a_{x_{m+2}})|, \ldots, |N_G(a_{x_n})|) <_{lex} r(G),$$

this is contradiction.

Proof.

```
Therefore, \tau_H(N_G(a_{m+1})) = N_{H_0}(m+1). By induction, for all i \in \{1, \ldots, n\}, \tau_H(N_G(a_i)) = N_{H_0}(i) and this implies G \simeq H_0.
```

Future work

- · What types of graphs, other than trees, is $X_{K_{\mathbb{N},2}}(ullet)$ a complete invariant for?
- · For any k, do there exist graphs G_1 and G_2 such that $X_{K_{\mathbb{N},k}}(G_1)=X_{K_{\mathbb{N},k}}(G_2)$, but they are not isomorphic to each other?

The properties of $\Lambda_T(G)$

- \cdot \mathcal{G} : A set of all finite and simple graphs
- · L(G): The line graph of G

Proposition

Let G be a tree and define

 $\mathcal{L}_{G} \coloneqq \{H \in \mathcal{G} \mid \text{There exists a homomorphism from } G \text{ to } L(H)\}.$

Then, \mathcal{L}_G is a complete imvariants for trees.

Question

Is there any other graph class for which \mathcal{L}_G is a complete invariant?