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Proper coloring

· G = (V (G),E (G)): simple graphs

Definition
A function f : V (G) −→ N is called a proper coloring if
f (u) 6= f (v) for all {u, v} ∈ E (G).

Definition (Graph homomorphism)
f : V (G) → V (H) is a homomorphism if for any
{x , y} ∈ E (G), {f (x), f (y)} ∈ E (H).

Proper coloring of G
⇐⇒
Graph homomorphism from G to the complete graph



Chromatic polynomial

· Hom(G ,H): the set of graph homomorphisms from G to
H .

· Kn: the complete graph with n vertices.

Definition
The chromatic polynomial of G is

χ(G , n) = ]Hom(G ,Kn).

Example
Let T be a tree with m vertices. Then χ(T , n) = n(n− 1)m−1.



Chromatic symmetric function

· KN: the complete graph whose vertex set is the set of
natural numbers.

Definition (Stanley (1995))
The chromatic symmetric function of G is

XKN(G) := XKN(G , x) :=
∑

ϕ∈Hom(G,KN)

∏
v∈VG

xϕ(v).

Remark
1n := (1, · · · , 1︸ ︷︷ ︸

n

, 0, · · · ). Then,

XKN(G , 1n) =
∑

ϕ∈Hom(G,Kn)

1 = ]Hom(G ,Kn) = χ(G , n).



Example of chromatic symmetric function

Example (Stanley (1995))

XKN(G1) = 4x1x2
2 x2

3 + 4x2
1 x2

2 x3 + 4x2
1 x2x2

3

+ 24x1x2x3x2
4 + · · ·

1

2

3

4

Figure: Graphs G1 and K4

χ(G1, 3) = XKN(G1, 13) = 4 + 4 + 4 = 12



Chromatic symmetric function
Theorem (Power sum expansion)
I G = (V (G),E (G)): a simple graph
I |V (G)| = n.
I S: any subset of E (G).

Define λ(S) the partition of n whose parts are equal to the
vertex sizes of the connected components of the spanning
subgraph of G with edge set S. Then,

XKN(G) =
∑
S⊂E

(−1)|S|pλ(S)

Conjecture (Stanley (1995))
If T1 and T2 are non-isomorphic trees then

XKN(T1) 6= XKN(T2).



Chromatic symmetric function

However, XKN(•) is not a complete invariant for graphs.
Example (Stanley (1995))
G1 and G2 are non-isomorphic but

XKN(G1) = XKN(G2)

Figure: Graphs G1 and G2



k-fold proper coloring
· G = (V (G),E (G)): a simple graph
·
(N

k
)
:= {I ⊂ N : |I | = k}

Definition
A function f : V (G) −→

(N
k
)

is called a k-fold proper
coloring if f (u) ∩ f (v) = ∅ for every pair of adjacent vertices.

Example
{3, 5}

{4, 6}

{1, 2}

{3, 4}

{5, 6}

Figure: 2-fold proper coloring

k-fold proper coloring
⇐⇒ graph homomorphism from G to the Kneser graph



Kneser graph

Definition
The Kneser graph KN,k is the
graph whose vertex set is

(N
k
)

and for any A,B ∈
(N

k
)
, A ∼ B

if and only if A ∩ B = ∅.

Remark
KN,1 is the complete graph
whose vertex set is the set of
natural numbers.
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Kneser chromatic function

Definition
· KN,k : the Kneser graph
· xu (u ∈

(N
k
)
): indeterminates

For any graph G , the Kneser-chromatic function XKN,k (G)
is defined as follows:

XKN,k (G) := XKN,k (G , x) :=
∑

ϕ∈Hom(G,KN,k)

∏
v∈VG

xϕ(v).

I XKN,1(•) = XKN(•) is the chromatic symmetric function.
I XKN,k+1

(G) is a stronger invariant than XKN,k (•):
If XKN,k+1

(G) = XKN,k+1
(H), then XKN,k (G) = XKN,k (H).



Example of Kneser chromatic function
{3, 5}

{4, 6}

{1, 2}

{3, 4}

{5, 6}

Figure: Graphs G1 and H ′ ↪→ KN,2

XKN,2 (G1) =
∑

ϕ∈Hom(G1,KN,2)

∏
v∈V(G1)

xϕ(v)

= · · · + 4x{1,2}x2
{3,4}x2

{5,6}

+ 24x{1,2}x{3,4}x{5,6}x2
{7,8} + 8x2

{1,2}x{3,4}x{5,6}x{3,7} + 8x{1,2}x{3,4}x{5,6}x{3,5}x{4,6}

+ 48x{1,2}x{3,4}x{5,6}x{1,9}x{7,8} + 8x{1,2}x{3,4}x{5,6}x{3,7}x{4,6} + 16x{1,2}x{3,4}x{5,6}x{5,7}x{7,8}
+ 16x{1,2}x{3,4}x{5,6}x{1,8}x{3,7} + 120x{1,2}x{3,4}x{5,6}x{7,8}x{9,10} + · · ·

By 8x{1,2}x{3,4}x{5,6}x{3,5}x{4,6}, there are 8 homomorphisms
from G1 to H ′.



Example of Kneser chromatic function

{3, 5}

{4, 6}

{1, 2}

{3, 4}

{5, 6}

Figure: Graphs G2 and H ′ ↪→ KN,2

XKN,2 (G2) = · · · + 4x{1,2}x2
{3,4}x2

{5,6} + 24x{1,2}x{3,4}x{5,6}x2
{7,8} + x2

{1,2}x{3,4}x{5,6}x{3,5}

+ 4x{1,2}x{3,4}x{5,6}x{1,5}x{3,7} + 48x{1,2}x{3,4}x{5,6}x{1,9}x{7,8}
+ 16x{1,2}x{3,4}x{5,6}x{5,7}x{7,8} + 16x{1,2}x{3,4}x{5,6}x{1,8}x{3,7}
+ 0x{1,2}x{3,4}x{5,6}x{3,5}x{4,6} + · · ·

By 0x{1,2}x{3,4}x{5,6}x{3,5}x{4,6}, there are no homomorphisms
from G2 to H . Therefore, XKN,2(G1) 6= XKN,2(G2)



The generalization of Stanley’s conjecture

Theorem (Miezaki et al. (2025+))
{XKN,k (•)}k∈N is a complete invariant for finite graphs.

Question (Miezaki et al. (2025+))
Is there a integer k such that XKN,k(•) is a complete invariant
for trees?
Stanley’s conjecture states that XKN,k(•) is a complete
invariant for trees when k = 1.
Theorem (N. (2025+))
XKN,2(•) is a complete invariant for trees.



The property of Kneser chromatic function

1 Chromatic symmetric function and Kneser chromatic
function

2 The property of Kneser chromatic function
· The strength of invariants for finite graphs
· Power sum expansion

3 Kneser chromatic function distinguishes trees when k = 2



The property of Kneser chromatic function

Theorem (Miezaki et al. (2025+))
Let {KN,k}k∈N be a Kneser graph series. Then

{XKN,k (•)}k∈N

is a complete invariant for finite graphs.

Theorem (Power sum expansion, Miezaki et al.
(2025+))

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|
∑

λ∈A(k)
GS

pλ



Universal graph series
Definition

· N ⊂ N
· {Hn}n∈N : a family of graphs.

We say {Hn}n∈N is a universal graph series if for any simple
graph G there exists n such that G is an induced subgraph of
Hn.
{KN,k}∞k=1 is universal graph series([Hamburger–Por–Walsh
(2009)]).

1
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3
4
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{2, 3, 7}

{4, 8, 9}

{2, 10, 11}

{1, 3, 4}

{1}
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{4}

{2}
{1, 3, 4}
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H-chromatic function
Definition

· H = (V (H),E (H)): simple graph
· xu (u ∈ V (H)): indeterminates.

For any graph G , the H-chromatic function XH(G) is
defined as follows:

XH(G) := XH(G , x) :=
∑

ϕ∈Hom(G,H)

∏
v∈VG

xϕ(v).

Definition
· H = {Hn}n∈N : a universal graph series

We define the universal H-chromatic function as follows:

{XHn(G)}n∈N



The property of universal chromatic function

Theorem (Miezaki et al. (2025+))
Let H = {Hn}n∈N be a universal graph series. Then

{XHn(•)}n∈N

is a complete invariant for finite graphs.

Example
· {XKN,k (•)}k∈N is a complete invariant for finite graphs.

I XKN,1(•) = XKN(•) is the chromatic symmetric function.
I XKN,k+1

(•) is a stronger invariant than XKN,k (•).



Universal chromatic function

Theorem (Miezaki et al. (2025+))
Let H = {Hn}n∈N be a universal graph series. Then

{XHn(•)}n∈N

is a complete invariant for finite graphs.

Lemma (Godsil and Royle (2001) p.128 Excercise
11)
Let G1 and G2 be finite graphs. If
|Hom(G1,F )| = |Hom(G2,F )| for any finite graph F , then G1

and G2 are isomorphic.



Universal chromatic function

Theorem (Miezaki et al. (2025+))
Let H = {Hn}n∈N be a universal graph series. Then

{XHn(•)}n∈N

is a complete invariant for finite graphs.

Proof of Theorem.
Let G1 and G2 be finite graphs and assume that
XHn(G1) = XHn(G2) for all n ∈ N . Suppose F is any graph.
Since {Hn}n∈N is a universal graph series, there exists nf ∈ N
such that F is an induced subgraph of Hnf . Then,
|Hom(G1,F )| and |Hom(G2,F )| are determined by XHnf

(G1)
and XHnf

(G2). Hence, we obtain
|Hom(G1,F )| = |Hom(G2,F )|.



The property of Kneser chromatic function

1 Chromatic symmetric function and Kneser chromatic
function

2 The property of Kneser chromatic function
· The strength of invariants for finite graphs
· Power sum expansion

3 Kneser chromatic function distinguishes trees when k = 2



Power sum expansion of XKN,k(G , x)
Theorem

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|
∑

λ∈A(k)
GS

pλ

Example

XKN,1( ) = p3 − 2p2,1 + p1,1,1

XKN,2( ) =
∑

λ∈A(2)
3K1

pλ − 2
∑

λ∈A(2)
K2tK1

pλ +
∑

λ∈A(2)
P3

pλ

= p − 2p − 2p + p + p + p + p .



Weak homomorphism

Definition
Define

Homw(G ,H) :=

 ϕ : V (G) → V (H) |
If {u, v} ∈ E (G) then
{ϕ(u), ϕ(v)} ∈ E (H)
or ϕ(u) = ϕ(v)

 .

A map in Homw(G ,H) is called a weak homomorphism.

Definition
Define

WH(G) := WH(G , x) :=
∑

ϕ∈Homw(G,H)

∏
v∈V (G)

xϕ(v).



Weak complement expansion
Proposition (Miezaki et al. (2025+))

XH(G) =
∑

S⊂E(G)

(−1)|S|WH(GS),

where GS denotes the spanning subgraph of G with edge set S
and H denotes the complement of H .
Proof. ∑

S⊂E(G)

(−1)|S|WH(GS) =
∑

S⊂E(G)

(−1)|S|
∑

ϕ∈Homw(GS ,H)

∏
v∈V (G)

xϕ(v)

=
∑

ϕ : V (G)→V (H)

∑
S⊂Eϕ

(−1)|S|
∏

v∈V (G)

xϕ(v),

where

Eϕ = { {u, v} ∈ E (G) | {ϕ(u), ϕ(v)} 6∈ E (H) } .



Weak complement expansion
Proof.
Since

∑
S⊂Eϕ

(−1)|S| =

{
1 if Eϕ = ∅.
0 otherwise.

Thus ∑
ϕ : V (G)→V (H)

∑
S⊂Eϕ

(−1)|S|
∏

v∈V (G)

xϕ(v) = XH(G).

Therefore,
XH(G) =

∑
S⊂E(G)

(−1)|S|WH(GS)



Weak complement expansion of XKN,k

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|WKN,k
(GS)

Especially, when k = 1,

XKN,1(G) =
∑

S⊂E(G)

(−1)|S|WKN,1
(GS)

=
∑
S⊂E

(−1)|S|
mS∏
i=1

WKN,1
(Gi)

=
∑
S⊂E

(−1)|S|
mS∏
i=1

∑
i∈N

x |Gi |
i

=
∑
S⊂E

(−1)|S|pλ(S),

where GS = G1 t G2 · · · t GmS .



Example of Kneser chromatic function

Figure: Graph G1

XKN,2 (G1) = · · · + 4x{1,2}x2
{3,4}x2

{5,6} + 4x{1,2}x2
{3,5}x2

{4,6}

+ 24x{1,2}x{3,4}x{5,6}x2
{7,8} + 8x2

{1,2}x{3,4}x{5,6}x{3,7} + 8x{1,2}x{3,4}x{5,6}x{3,5}x{4,6}

+ 48x{1,2}x{3,4}x{5,6}x{1,9}x{7,8} + 8x{1,2}x{3,4}x{5,6}x{3,7}x{4,6} + 16x{1,2}x{3,4}x{5,6}x{5,7}x{7,8}
+ 16x{1,2}x{3,4}x{5,6}x{1,8}x{3,7} + 120x{1,2}x{3,4}x{5,6}x{7,8}x{9,10} + · · ·

The coefficient of x{1,2}x2
{3,4}x2

{5,6} and x{1,2}x2
{3,5}x2

{4,6} must
be the same, because

{σ({1, 2}), σ({3, 4}), σ({5, 6})} = {{1, 2}, {3, 5}, {4, 6}},

where σ = (4, 5) ∈ SN = Aut(KN,2).



k-symmetric function

· RKN,k := CJxw | w ∈
(N

k
)
K

· SN: the symmetric group
Define Sym(k) to be the subring of RSN

KN,k
consisting of

elements of finite degrees.

↓

XKN,k (G) belongs to Sym(k). Since XKN,k (G) is homogeneous
of degree |V (G)|, XKN,k (G) belongs to Sym(k).
Note that Sym(1) is the ring of symmetric functions and pλ is
the bases of Sym(1).



Notation

Definition
Let {I1, . . . , In} and {J1, . . . , Jn} be two multisets consisting of
elements in

(N
k
)
. Define an equivalence relation ∼ by

{I1, . . . , In} ∼ {J1, . . . , Jn} if there exists σ ∈ SN such that

{I1, . . . , In} = {σ(J1), . . . , σ(Jn)}

as multisets.

Definition
Let P(k)

n denote the equivalence classes of such multisets
discussed above and P(k) :=

⊔∞
n=1P

(k)
n .

↓

We can regard λ ∈ P (k)
n as a k-uniform hyper-multigraph.



Example of P (k)
n

Example (P (1)
3 ,P (2)

3 )

P(1)
3 = {{1 + 1 + 1}, {1 + 2}, {3}}

P(2)
3 = {{ }, { }, { }, , , , , }

We say that λ ∈ P (k) is connected if it is connected as a
hyper-multigraph.
=⇒ λ = λ1 t · · · t λ` in the usual manner.
Example

{ } = { t t }



Linear basis for Sym(k)

Let λ = λ1 t · · · t λ`. Then, we define the power sum k-fold
symmetric function pλ = p(k)

λ ∈ Sym(k) by

pλ :=
∏̀
i=1

∑
{I1,...,In}∈λi

xI1 · · · xIn .

Example

p1+2 = (
∑
i∈N

xi)(
∑
j∈N

x2
j )

p
{ }

= (
∑

i ,j,k∈N
i 6=j 6=k

x{i ,j}x{j,k})(
∑
i ,j∈N
i 6=j

x{i ,j})

When k = 1, pλ is the usual power sum symmetric function.



The property of pλ
Proposition
The set {pλ}λ∈P(k) forms a linear basis for Sym(k) over C. In
particular, Sym(k) is freely generated as a C-algebra by{

pλ ∈ P (k)
∣∣ λ is connected

}
.

Theorem

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|
∑

λ∈A(k)
GS

pλ

Recall that the weak complement expansion of XKN,k is as
following:

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|WKN,k
(GS)



Admissible
Definition (Admissible)
We say that H ∈ P (k)

n is admissible by G if there exists a
bijection ϕ : V (G) → E (H) such that for any {u, v} ∈ E (G),
it holds that ϕ(u) ∩ ϕ(v) 6= ∅.

Example
We consider G = and ∈ P (2)

3 .

The edge set of is denoted by {{1, 2}, {2, 3}, {3, 4}}. Then,

is admissible by , because there exists admissible bijection ϕ
such that

c

b

a

7→ {{1, 2}, {2, 3}, {3, 4}}

ϕ(a) = {1, 2}, ϕ(b) = {2, 3}, ϕ(c) = {3, 4}.



Admissible

Definition (A(k)
G )

Let G be a connected graph with n vertices. We then define
A(k)

G as follows:

A(k)
G := {H ∈ P (k)

n | H is admissible by G}.

If G is disconnected, and G = G1 t · · · t G` is its
decomposition into connected components, we define
A(k)

G := A(k)
G1

× · · · × A(k)
G`

.

Example

A(2)
= { , , , , }



Power sum expansion

Lemma

WKN,k
(G) =

∑
λ∈A(k)

G

pλ,

where pλ = pλ1 · · · pλ`
if λ = (λ1, . . . , λ`).

Proof.
When G is connected,

WKN,k
(G) =

∑
ϕ∈Homw(G,KN,k)

∏
v∈V (G)

xϕ(v) =
∑

λ∈A(k)
G

pλ.



Power sum expansion
Theorem (Power sum expansion)

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|
∑

λ∈A(k)
GS

pλ,

where GS is the spanning subgraph of G with edge set S.
Proof.

XKN,k (G) =
∑

S⊂E(G)

(−1)|S|WKN,k
(G)

=
∑

S⊂E(G)

(−1)|S|
∑

λ∈A(k)
G

pλ



Kneser chromatic function distinguishes trees when
k = 2

1 Chromatic symmetric function and Kneser chromatic
function

2 The property of Kneser chromatic function
· The strength of invariants for finite graphs
· Power sum expansion

3 Kneser chromatic function distinguishes trees when k = 2



Main theorem
Hereinafter, we denote AG and Pn by A(2)

G and P(2)
n ,

respectively.
Theorem (Restatement)
XKN,2(•) is a complete invariant for trees.

Theorem (Power sum expansion)

XKN,2(G) =
∑

S⊂E(G)

(−1)|S|
∑

λ∈AGS

pλ.

From power sum expansion, when G1 and G2 are trees,

XKN,2(G1) = XKN,2(G2) =⇒ AG1 = AG2 .

We consider the property of AG .



AG from XKN,2(G)

Example

XKN,2( ) = p − 2p − 2p + p + p + p + p + p

Define
G = {{ }, { }, { , }, , , , , }.

From power sum expansion, G =
⋃

S⊂E(G) AGS and when G is
a tree, GS is connected if and only if GS = G .

=⇒ A = {H ∈ G | H is connected}

= { , , , , }.



The properties of ΛT (G)

We consider which H ∈ AG best reflects the properties of G .
We define

ΛT (G) := {H ∈ AG | H is a tree with no multiedges}.

Example

A = { , , , , }

ΛT ( ) = { , }



Minimum rooted vertex sequence
· T : Tree
· d(v): Degree of v
· dT (u, v): Distance from u to v

Definition (Minimum rooted vertex sequence)
Let v = a1, and let {ai}n

i=1 be a vertex sequence of T that
satisfies the following two conditions for any i and j :

· dT (v , ai) ≤ dT (v , aj).
· If dT (v , ai) = dT (v , aj) and i ≤ j , then d(ai) ≤ d(aj).

Then, we call {ai}n
i=1 a minimum rooted vertex sequence, and

we refer to the degree sequence

(d(v), d(a2), · · · , d(an))

as the minimum degree sequence of v .



Example of minimum rooted vertex sequence
a1

3 2

7 6 4 85

109 11 12

Figure: Minimum rooted vertex sequence

The degree sequence is

(2, 3, 4, 1, 1, 1, 3, 3, 1, 1, 1, 1).

Therefore,

r(T , a1) = (2, 3, 4, 1, 1, 1, 3, 3, 1, 1, 1, 1).



Minimum leaf, minimum degree sequence

Definition (Minimum leaf)
A vertex v is said to be a minimum leaf if r(T , v) is minimal
in the lexicographical order among all vertices in T .

Definition (Minimum degree sequence)
We call minimum degree sequence of a minimum leaf the
minimum degree sequence of T and denote it by r(T ).
Note that, generally, a minimum leaf is not unique, but the
minimum degree sequence of a tree is always unique.



Example of minimum leaf and minimum degree
sequence

a1

3 2

7 6 4 85

109 11 12

6

7 4

10 9 5 28

1211 a11 3

Figure: Minimum rooted vertex sequence

r(T , a1) = (2, 3, 4, 1, 1, 1, 3, 3, 1, 1, 1, 1),

r(T , a11) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1).

Thus,
r(T , a11) ≤lex r(T , a1)



Example of minimum leaf and minimum degree
sequence

6

7 4

10 9 5 28

1211 a11 3

6

7 4

10 9 5 28

1211 3 a12

Figure: Minimum rooted vertex sequence

r(T , a11) = r(T , a12) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1).

Since a11 and a12 are the minimum leaves, the minimum
degree sequence of T is

r(T ) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1).



Λ̃T (G) is a complete invariant for trees

We define Λ̃T (G) as follows:

Λ̃T (G) := {H ∈ ΛT (G) | r(H) is the minimum by ≤lex}.

Theorem (A)
Let H ∈ Λ̃T (G). Define H0 as a tree which is obtained by
removing any minimum leaf from H . Then, H0 is isomorphic
to G .

This implies Λ̃T (G) is a complete invariant for trees.
=⇒ This also shows AG is a complete invariant for trees.



Example of Theorem
Theorem
Let H ∈ Λ̃T (G). Define H0 as a tree which is obtained by
removing any minimum leaf from H . Then, H0 is isomorphic
to G .

Example

A = { , , , , }

ΛT ( ) = { , }

Λ̃T ( ) = { }

The graph removing a minimum leaf from is .



The proof of the main theorem

Theorem
XKN,2(•) is a complete invariant for trees.

Proof.
Let G1 and G2 be trees which holds XKN,2(G1) = XKN,2(G2).
Then, AG1 = AG2 and especially Λ̃T (G1) = Λ̃T (G2).
Therefore, there exists H such that H ∈ Λ̃T (G1) = Λ̃T (G2).
From Theorem A, H0 ' G1 and H0 ' G2. Therefore,
G1 ' G2.

XKN,2(G) AG Λ̃T (G) H0 ' GPower sum
expansion

Theorem A



Notation
· {ai}n

i=1: minimum rooted vertex sequence with v = a1 as
the root

· d(ai) : The degree of ai

· r(G) = (d(a1), . . . , d(an)): Minimum degree sequence of
G

· r(G)k = d(ak)

Definition
For any vertex ai 6= v , a vertex aip is called the parent of ai
with v as the root if aip is adjacent to ai and ip < i .

Note that the parent of ai is always uniquely determined.



Lemma A
Lemma (Lemma A)
For any H ∈ Λ̃T ,

r(H) ≤lex (1, 2, r(G)2, r(G)3, · · · , r(G)n).

Proof.
We construct H ∈ ΛT (G) such that

r(H) = (1, 2, r(G)2, r(G)3, · · · , r(G)n).

Define φ : V (G) −→
(
N ∪ {0}

2

)
as follows:

φ(ai) = {ip, i},

where we define 1p = 0.



Example of H ∈ ΛT (G)
a6

a7 a4

a10 a9 a5 a2a8

a12a11 a1 a3

(a) G

{4, 6}

{6, 7} {2, 4}

{7, 10} {7, 9}{4, 5} {1, 2}{7, 8}

{10, 12}{10, 11} {0, 1} {2, 3}

(b) Im(φ)

6

7 4

10 9 5 28

1211 1 3

0

(c) H



The property of H
a6

a7 a4

a10 a9 a5 a2a8

a12a11 a1 a3

(a) G

6

7 4

10 9 5 28

1211 1 3

0

(b) H

r(G) = (1, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1)

r(H) = (1, 2, 3, 1, 3, 1, 2, 4, 1, 1, 3, 1, 1)

Proof of Lemma A.
Then, a tree H whose edge set is Im(φ) is admisibble by G and

r(H) = (1, 2, r(G)2, r(G)3, · · · , r(G)n).



Theorem A
Theorem
Let H ∈ Λ̃T (G). Define H0 as a tree which is obtained by
removing any minimum leaf from H . Then, H0 is isomorphic
to G .
Proof.
Without loss of generality, we assume that
V (H) = {0, 1, . . . , n}, 0 is a minimum leaf, and (0, 1, . . . , n) is
a minimum rooted vertex sequence. Then,

E (H) = {{ip, i} | 1 ≤ i ≤ n, ip is a parent of i}.

Therefore,

τ : E (H) −→ {1, . . . , n}
{ip, i} 7→ i

is a bijection.



The proof of Theorem A

6

7 4

10 9 5 28

1211 1 3

0

(a) H

a6

a7 a4

a10 a9 a5 a2a8

a12a11 a1 a3

(b) G

Figure: τH : ai 7→ i

Since H is admissible by G , there exists a bijection
φ : V (G) −→ E (H). Therefore, τ ◦ φ : V (G) −→ V (H0) is
also bijection. We show that τH = τ ◦ φ is a graph
isomorphism.



The property of τH

· τH(ai) = i
· NH(i),NG(ai) : The neighbor of i in H and that of ai in

G , respectively.
Since φ is admissible by G ,

φ(NG(ai)) ⊂ {{x , y} ∈ E (H) | {ip, i} ∩ {x , y} 6= ∅}.

Applying τ to both sides, when ip 6= 0,

τH(NG(ai)) ⊂ NH0(ip) ∪ NH0(i).

If ip = 0,
τH(NG(ai)) ⊂ NH(0) ∪ NH0(i).



The proof of Theorem A

Proof.
We show τH(NG(ai)) = NH(i) by induction on i . Since
H ∈ Λ̃T (G), from Lemma A we obtain r(H)1 = |NH(1)| = 1
and = r(H)2 = |NH(1)| ≤ 2. When |V (G)| ≥ 2, r(H)2 = 2
and this implies

{{x , y} ∈ E (H) | 0 ∈ {x , y}} = {{0, 1}}
{{x , y} ∈ E (H) | 1 ∈ {x , y}} = {{0, 1}, {1, 2}}.

Therefore, φ(v1) = {0, 1} and NH0(1) = {0, 2}.



The proof of Theorem A

Proof.
Since φ is admissible by G ,

τH(NG(a1)) ⊂ NH(0) ∪ NH0(1)

= {1, 2}.

Because τH(a1) = 1 and NG(a1) 6= ∅,

τH(NG(a1)) = {2} = NH0(1).



The proof of Theorem A
Proof.
Next, we assume that τH(NG(ai)) = NH0(i) holds for all i
satisfying 1 ≤ i ≤ m < n. Then, there exists pm+1 < m + 1
such that φ(am+1) = {pm+1,m + 1}.

6

7 4

10 9 5 28

1211 1 3

0

(a) H

a6

a7 a4

a10 a9 a5 a2a8

a12a11 a1 a3

?

(b) G

Figure: m = 6



The proof of Theorem A

Similarly to before, since φ is admissible by G ,

τH(NG(am+1)) ⊂ NH0(pm+1) ∪ NH0(m + 1).

From the assumption, τH(NG(apm+1)) = NH0(pm+1), especially
am+1 ∈ NG(apm+1). Therefore,

τH(NG(am+1)) ∩ τH(NG(apm+1)) = ∅

and
τH(NG(am+1)) ⊂ NH0(m + 1).



The proof of Theorem A
6

7 4

10 9 5 28

1211 1 3

0

(a) H

a6

a7 a4

a9

a10

a5 a2a8

a12a11 a1 a3

(b) G

Figure: If τH(NG(a7)) ( NH0(7)

From Lemma A, |NH0(m + 1)| ≤ r(G)m+1. If
τH(NG(am+1)) ( NH0(m + 1), then the degree sequence

(|NG(a1)|, . . . , |NG(am+1)|, |NG(axm+2)|, . . . , |NG(axn)|) <lex r(G),

this is contradiction.



The proof of Theorem A

Proof.
Therefore, τH(NG(am+1)) = NH0(m + 1). By induction, for all
i ∈ {1, . . . , n}, τH(NG(ai)) = NH0(i) and this implies
G ' H0.



Future work

· What types of graphs, other than trees, is XKN,2(•) a
complete invariant for?

· For any k , do there exist graphs G1 and G2 such that
XKN,k (G1) = XKN,k (G2), but they are not isomorphic to
each other?



The properties of ΛT (G)

· G : A set of all finite and simple graphs
· L(G) : The line graph of G

Proposition
Let G be a tree and define

LG := {H ∈ G | There exists a homomorphism from G to L(H)}.

Then, LG is a complete imvariants for trees.

Question
Is there any other graph class for which LG is a complete
invariant?
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