可換代数と組合せ論セミナー
Commutative Algebra and Combinatorics Seminar
可換代数と組合せ論セミナーは,可換環論や組合せ論,およびその周辺分野の専門家をお招きし,大学院生でも理解できるような基礎的な内容から,最新の研究結果までをじっくり時間をかけてお話ししていただく勉強会形式のセミナーです.
興味がある方は誰でも参加可能です.
次回のセミナー
第8回
ご参加の場合こちらより参加登録をお願いします(懇親会に参加希望の場合は5/3 (土)までに登録を完了してください).
-
日時:2025年5月10日(土) 13:30~17:00
会場:東邦大学 習志野キャンパス 理学部III号館4階 3404教室
講演者:長岡大(学習院大学)
タイトル:対数的デルペッツォ曲面の分類について
要旨
- 対数的デルペッツォ曲面とは、高々klt特異点を持ち、反標準因子が豊富である 代数曲面のことである。1999年にKeel-MᶜKernan氏らにより対数的デルペッツォ曲面の分類のアルゴリズムが考案され、2024年にLacini氏により低標数を場合を除いたアルゴリズムの出力結果が得られた。本講演では、klt特異点に対して定まる双対グラフに関する性質を述べたのち、Keel-MᶜKernan氏らのアルゴリズムを説明する。
次回以降のセミナー
第9回
-
日時:2025年6月7日(土) 13:30~17:00
会場:東邦大学 習志野キャンパス 理学部III号館4階 3404教室
講演者:辻栄周平(北海道教育大学)
第10回
-
日時:2025年7月26日(土) 13:30~17:00
会場:東邦大学 習志野キャンパス 理学部III号館4階 3404教室
講演者:久保田絢子(埼玉大学)
世話人
-
土谷昭善(東邦大学理学部情報科学科)
長峰孝典(日本大学理工学部数学科)
連絡先
-
土谷昭善(akiyoshi "at" is.sci.toho-u.ac.jp)
support info.
本セミナーは以下の助成を受けて運営しています.
- 若手研究 22K13890「非特異格子凸多面体に関連する代数的および組合せ論的諸問題の解決」(研究代表者:土谷昭善)
若手研究 21K13782「アフィン代数多様体における消去問題」(研究代表者:長峰孝典)